28

108. Авакян С.В., Воронин Н.А. Влияние магнитных бурь на аварийность магистральных газонефтепроводов.

[Предложено учитывать геомагнитно-индуцированные токи (ГИТ) при использовании и эксплуатации станций катодной защиты, причем не только для нефтегазопроводов (особенно меридионального направления),но и везде, где применяется такая электрохимическая защита, на предприятиях коммунального хозяйства, химического, энергетического и промышленного комплекса, чтобы в дальнейшем прекратить аномально быструю коррозию российских трубопроводных систем].

Академия Энергетики, 2011, №3, 80

- 109. Из истории электротехники. Опыты В.В. Петрова с электрической дугой 29 (17) мая 1802 г.
- [О громадном вкладе в науку и технику, сделанным Петровым В.В., открывшим полтора столетия назад явление электрической дуги].

Электричество, 2011, №7, 64

110. Новости электротехнических и электроэнергетических компаний.

[В новостях нашли отображение оперативные данные по выработке и потреблению электроэнергии в Единой энергосистеме России в июне 2011 г., данные по подготовке к прохождению осенне-зимнего периода 2011/12 г., а также данные о проведении отбора поставщиков системных услуг по регулированию реактивной мощности без производства электроэнергии, данные о прошедшем совещании руководителей и специалистов служб релейной защиты и автоматики (РЗА) Системного оператора и др.].

Электрические станции, 2011, №7, 55

111. Самый большой в мире водородный топливный элемент отправится на коммерческую опытную эксплуатацию.

Modern Power Systems, 2010, No 9, 5

112. L. Caprile, B. Passalacqua, A. Perfumo, A. Torazza. MCFC-CCS: новый подход, исключающий увеличенный расход энергии.

[Ansaldo Fuel Cells. Топливные элементы с расплавленным карбонатом как основа нового подхода к улавливанию и хранению CO_2 : применение MCFC для улавливания CO_2 ; сравнение MCFC-CCS и традиционного «пассивного» CCS.]

Modern Power Systems, 2010, No 9, 12-14

ОАО «НТЦ электроэнергетики»

АННОТИРОВАННЫЙ БЮЛЛЕТЕНЬ СТАТЕЙ ИЗ ЖУРНАЛОВ ПО ЭЛЕКТРОЭНЕРГЕТИКЕ

(Техническая библиотека)

Nº 12

Москва, 2011 г.

СОДЕРЖАНИЕ

	стр.
ОБЩАЯ ЭНЕРГЕТИКА	3
РЕФОРМА В ЭНЕРГЕТИКЕ	5
РЕЖИМЫ ЭНЕРГОСИСТЕМ	7
УПРАВЛЕНИЕ ЭНЕРГОСИСТЕМАМИ	8
РЕЛЕЙНАЯ ЗАЩИТА, ТЕЛЕМЕХАНИКА, СВЯЗЬ	8
ЭЛЕКТРИЧЕСКИЕ СЕТИ	10
ПЕРЕДАЧА ПОСТОЯННОГО ТОКА.	11
СИЛОВАЯ ЭЛЕКТРОНИКА	
ВОЗДУШНЫЕ И КАБЕЛЬНЫЕ ЛИНИИ	12
ЭЛЕКТРОСТАНЦИИ И ПОДСТАНЦИИ	15
ОБОРУДОВАНИЕ. ИСПЫТАНИЯ. ИЗОЛЯЦИЯ	15
ЭЛЕКТРИЧЕСКИЕ МАШИНЫ	18
ТРАНСФОРМАТОРЫ	19
ЭЛЕКТРИЧЕСКИЕ АППАРАТЫ	20
ВОЗОБНОВЛЯЕМЫЕ ИСТОЧНИКИ ЭНЕРГИИ	20
КАЧЕСТВО ЭЛЕКТРОЭНЕРГИИ И ЭМС	25
ПРОЧИЕ ВОПРОСЫ	25

103. Новинки на рынке электроэнергетики. Transmission & Distribution world, 2011, No 6, 58-67

104. О надежном обеспечении электроэнергией потребителей Москвы и Московской области с учетом анализа причин масштабных отключений в Московском регионе в период с 26 декабря 2010 г. по 11 января 2011 г.

[Представлен Протокол №3/11 Совместного заседания Научного совета РАН по проблемам надежности и безопасности больших систем энергетики и Научно-технической коллегии НП «НТС ЕЭС» от 14 апреля 2011 г].

Вести в электроэнергетике, 2011, №3, 35

105. Потребление и выработка электроэнергии в России за 5 месяцев 2011 г.

[По оперативным данным ОАО «СО ЕЭС» потребление электроэнергии в Единой энергосистеме России в мае 2011 г. составило 74,8 млрд кВтч, что на 2,4% больше объема потребления в мае 2010 г. Представлена таблица выработки и потребления электроэнергии по энергозонам].

Вести в электроэнергетике, 2011, №3, 56

106. Елисеева О.А. Территориальные сдвиги в добыче нефти и газа. [Рассматривается ежегодная динамика роста добычи нефти и газа по России с 2000 по 2010 гг., а также региональная структура добычи нефти и газа в процентах к итогу по РФ за этот же период. Согласно утвержденной в 2007 г. Минпромэнерго России Программе в Восточной Сибири и на Дальнем Востоке создается единая система добычи, транспортировки и газоснабжения с учетом возможного экспорта газа на рынки Китая и других стран Азиатско- Тихоокеанского региона].

Академия Энергетики, 2011, №3, 20

107. Бутузов В.А., Тамаров Г.В., Шетов В.Х. Строительство геотермальной системы теплоснабжения.

[Представлены результаты первого этапа модернизации системы геотермального теплоснабжения, типичной для Краснодарского края].

Академия Энергетики,2011, №3, 56

99. Осика Л.К. О сложившемся порядке ввода в эксплуатацию энергообъектов.

[Приемка в эксплуатацию законченных строительством объектов заменена на ввод объекта в эксплуатацию. Рассмотрен ряд различий при оформлении работы генерирующего источника на оптовом рынке электроэнергии и мощности (ОРЭМ), где требуется особая процедура оформления групп точек поставки (ГТП), либо на розничных рынках электроэнергии (РРЭ)].

Энергоэксперт, 2011, №2, 96

100. Шутиков А. Что хорошо для АЭС, хорошо и для меня.

[Производственная система «Росатом» (ПСР) – главное стратегическое средство повышения эффективности деятельности ОАО «Концерн Росэнергоатом». Рассмотрены два направления внедрения ПСР на АЭС ОАО «Концерн Росэнергоатом» : техническое обслуживание, ремонт энергоблоков и управление производственными складскими запасами. Дан всесторонний анализ внедрения ПСР на предприятиях отрасли, включая целевые показатели внедрения и развития ПСР в 2011 г.].

Росэнергоатом, 2011, №1, 9

101. Маркова Е. Каждый может проявить себя.

[Внедрение Производственной системы «Росатом» (ПСР) на атомных предприятиях послужило стимулом для возрождения рабочей инициативы. Приведены примеры внедрения в производство рационализаторских предложений рабочих концерна].

Росэнергоатом, 2011, №1,21

102. Аксенов В. Новая система ремонта.

[Представлены новые предложения по поводу организации технического обслуживания и ремонта на атомных станциях, включающие в себя передачу подрядным организациям все работы по техническому обслуживанию и ремонту на АЭС за исключением работ со свежим и отработанным топливом, релейной защиты электрооборудования, системы возбуждения генератора, электрооборудования и механической части СУЗ, верхнего уровня АСУ ТП].

Росэнергоатом, 2011, №1,62

ОБЩАЯ ЭНЕРГЕТИКА

1. Кристи Р. Модернизация энергетической инфраструктуры Центральной и восточной Европы, России и СНГ.

[Для преодоления глобального экономического кризиса, который привел к сокращению инвестиций в новые проекты по обновлению энергетической инфраструктуры в странах Центральной и Восточной Европы, правительствам приходится вырабатывать долговременную энергетическую политику. Для создания устойчивой энергетической инфраструктуры России потребуется разделить будущие инвестиции на два основных направления: модернизацию системы передачи и распределения энергии и развитие возобновляемой энергетики].

Академия энергетики 2011, №4, 6

2. «Отрасль .ТЭК - 2011»

[с 13 по 17 июня в Санкт- Петербурге состоялась серия мероприятий Министерства энергетики РФ «Отрасль. ТЭК – 2011». В фокусе внимания находились основные темы, связанные с перспективами развития ТЭК России: энергоэффективность, энергодиалог Россия – Европа и проблемы международного сотрудничества в области энергетики, инновационные технологии, способствующие развитию всех отраслей ТЭК, реализация масштабных инфраструктурных проектов, развитие возобновляемых источников энергии и др].

Вести в электроэнергетике 2011, №4, 3

3. Дискуссия на панельной сессии «Состояние, проблемы и перспективы развития электроэнергетики».

[Рассматриваются проблемы разумного сочетания государственного регулирования и рыночных механизмов как в сетевом комплексе электроэнергетики, так и в секторе генерации. Участие в круглом столе приняли генеральный директор ЭНИН Волков Э.П., заместитель министра энергетики РФ Шишкин А.Н., генеральный директор ООО «Газпром энергохолдинг» Федоров Д.В., Председатель Правления ОАО «ФСК ЕЭС» Бударгин О.М. и др.].

Вести в электроэнергетике 2011, №4, 7

4. Новые энергетические технологии. [Схематичная цепь преобразования электроэнергии.] **EW, 2011, No 12, 11**

5. Лагерев А.В., Ханаева В.Н., Смирнов К.С. Приоритеты и перспективы развития электроэнергетики Восточной Сибири.

[Приведены результаты прогнозных исследований развития электроэнергетики Восточной Сибири до 2030 г. Для двух сценариев развития экономики региона показаны возможные структурные изменения производства электроэнергии в Восточной Сибири, оценены требуемые масштабы вводимых генерирующих мощностей, определена потребность в топливе и инвестициях на развитие электростанций (и электросетевых объектов) в регионе, рассмотрены проблемы, связанные с газификацией тепловых электростанций Восточной Сибири и экспортом электроэнергии на сопредельные территории].

Энергетик 2011, №8, 2

6. Frank Stier. Энергия без границ и национальный протекционизм.

[Südost-Correspondenzbureau Balkan. Действия Европейского Союза и юго-восточной Европы по созданию единого энергетического рынка для обеспечения стабильного и непрерывного обеспечения электроэнергией всех его участников.]

EW, 2011, No 12, 36-39

7. Christof Duthaler. Первые европейские Единые правила Сети находятся на стадии разработки.

[Swissgrid. Компания ENTSO-E взяла на себя обязанность разработать Единые правила Сети на основе так называемых Основных руководящих положений третьего Энергетического пакета. В документе будут определены и приведены в соответствие существующие многочисленные разрозненные правила и положения для электросети.]

Bulletin SEV/VSE, 2011, No 8, 21

8. Существующие и возможные стандарты.

[Перечень существующих и возможных стандартов электротехники, а так же стандартов CENELIC (Европейского комитета электротехнической стандартизации).]

Bulletin SEV/VSE, 2011, No 8, 69-74

9. Итоговая статистика электроэнергии в Швейцарии — 2010. [Общий обзор; передача электроэнергии конечному потребителю; энергоносители; экономическая и экологическая обстановка; приложения.]

Bulletin SEV/VSE, 2011, No 8, приложение

КАЧЕСТВО ЭЛЕКТРОЭНЕРГИИ И ЭМС

95. Анализатор качества электроэнергии определяет «зелёные» проблемы.

[РМ7000 – современный анализатор, обладающий дополнительными характеристиками для определения и решения проблем, связанных с качеством электроэнергии и возникающих из-за увеличения использования энергоэффективных устройств и возобновляемых источников электроэнергии.]

Modern Power Systems, 2011, No 7, 21

96. Marc Scherer. Повышение стабильности частоты электроэнергии.

[Swissgrid AG. Вместе с либерализацией энергетического рынка и увеличением объёма передаваемой электроэнергии в континентальной Европе возникла проблема дестабилизации частоты электроэнергии. Чтобы справиться с этой проблемой, в Швейцарии на поощрительной основе введён расчёт компенсационной энергии.]

EW, 2011, No 12, 32-35

прочие вопросы

97. Alex Brisbourne. Сотовая связь общего пользования как объединённое пространство для современных сетевых операций.

[Kore Telematics. Представление соединения M2M (устройствоустройство), работающего с помощью сотовых сетей общего пользования, в качестве объединённого пространства для передачи данных в электроэнергетической сети]

Electric Light&Power, 2011, No 89/03, 60-61

98. Bernard Dalle. EMF-ELF.

[SEE. Итоги 2^{го} Международного коллоквиума по электрическим и магнитным полям.]

Revue de l'électricité et de l'électronique, 2011, No 3, 10

91. Пришло время испытаний морских буев.

[Компания OPT (Ocean Power Technologies) разработала автономную систему LEAP PowerBuoy, включающую коробку отбора мощности и систему аккумулирования энергии: общие положения, система аккумулирования энергии, принцип работы, испытания.]

Modern Power Systems, 2011, No 9, 47

92. Denise Bode, Tom Maves. Основные положения системы снабжения энергией ветра в США.

[American Wind Energy Association. С 2007 года энергия ветра составляет 35% от всей генерируемой мощности в США. В статье рассматриваются значительные успехи США в области генерации и поставки энергии ветра, а так же в сфере производства ветротурбин и их элементов.]

Electric Light&Power, 2011, No 4, 38-40

93. Бреусов В.П. Солнечная энергетика.

[Рассмотрены солнечные тепловые электростанции (СТЭ), для которых в качестве перспективных рассматриваются следующие основные конфигурации: с параболо-цилиндрическими концентраторами солнечного излучения с высокотемпературным жидким теплоносителем; башенного типа, концентрация солнечного излучения в которых осуществляется с помощью гелиостатов; с параболическими концентраторами и двигателями Стирлинга, а так же фотоэлектрические преобразователи (ФЭП), обеспечивающие прямое преобразование энергии солнечного излучения в электроэнергию и использующих как направленное, так и рассеянное излучение, а так же солнечные установки теплоснабжения].

Акакдемия энергетики, 2011, №5, 46

94. Николаев В.Г. О перспективах промышленного производства электроэнергии на ветроэлектрических станциях России.

[Предложена схема перспективного (до 2020 г.) размещения и использования в России ветроэлектрических станций (ВСЭ). Ее основу составляют ВЭС, находящиеся в энергетически дефицитных районах, где расчетная себестоимость вырабатываемой ими электроэнергии (ЭЭ) ниже себестоимости ЭЭ, производимой на вновь строящихся тепловых электростанциях на газе].

Промышленная энергетика, 2011, №9, 34

10. Баранник В.А. Энергоэффективность экономик России и Украины.

[Дан анализ динамики энергоемкости ВВП, определены критичные и граничные уровни энергоемкости ВВП и дан анализ прогнозных уровней энергоемкости ВВП России и Украины].

Академия энергетики, 2011, №5, 22

РЕФОРМА В ЭНЕРГЕТИКЕ

11. Крупнейшая реформа со времён приватизации.

[Правительство Великобритании представило официальный документ «Реформа рынка электричества» и Дорожную карту по развитию возобновляемых источников энергии.]

Modern Power Systems, 2011, No 7, 6

12. Федяков И.В. Россия теряет свои позиции в гидроэнергетической отрасли.

[Износ оборудования – это системная проблема всей электроэнергетической отрасли. Особое опасение внушает состояние гидроэлектростанций Росии, 20,9% мощности которых отработали более 50 лет].

Академия энергетики 2011, №4, 10

13. Бессмертных А.В., Зайченко В.М. Перспективы инвестиционной политики в области энергетики.

[Статья написана как ответ на вопрос, заданный доктором технических наук В.Б. Ивановым: «Существуют ли у научного сообщества разработки в области энергетики, заслуживающие внимания бизнеса?». В статье представлена информация по новым энергетическим технологиям, разработка которых выполнена в Объединенном институте высоких температур РАН (ОИВТ РАН)].

Академия энергетики 2011, №4, 18

14. Григорьев А.В. О возврате электроэнергетики России к вертикальной интеграции отрасли.

[Опираясь на негативный опыт стран Западной Европы и Америки, на отрицательные последствия в электроэнергетике нашей страны, произошедшие вследствие дезинтеграции отрасли, и проявившиеся тенденции её реинтеграции, выражено убеждение во вредности для благосостояния и безопасности России дезинтеграции и перевода всей отечественной электроэнергетики в конкурентную сферу частного бизнеса. Аргументирована насущная необходимость восстановления вертикальной интеграции электроэнергетики России].

Энергетик 2011, №8, 10

15. Электроэнергетика России. Мифы и реальность (в продолжение темы).

[Продолжение обсуждения статьи, опубликованной в №5 журнала «ЭнергоРынок» за 2011 год, профессора Булатова «Электроэнергетика России. Мифы и реальность» в которой анализировались итоги заседания президиума Госсовета РФ по энергетике, проходившего 11 марта 2011 года].

ЭнергоРынок, 2011, №7-8, 26

16. VDE ставит под сомнение энергетические цели правительства. [VDE (Союз немецких электротехников) в своих рекомендациях «Электроснабжение в Германии и Европе» сделал основные выводы: успешно начатые достижения в области возобновляемых источников электроэнергии позволят справиться в будущем с пиковой годовой нагрузкой, однако запланированное снижение спроса на электроэнергию абсолютно недостижимо.]

EW, 2011, No 12, 7-10

17. Нигматулин Б. Электроэнергетика России. Мифы и реальность. [В статье представлен анализ опубликованных итогов заседания президиума Госсовета РФ по энергетике, проходившего 11 марта 2011 года в Хакассии, на котором обсуждалось повышение устойчивости функционирования электроэнергетического комплекса РФ (см. продолжение обсуждения темы в журнале ЭнергоРынок № 7-8 2011 года)].

ЭнергоРынок 2011, №5, 9

18. Кудрявый В. Противозатратная электроэнергетика.

[В центре внимания предлагаемые меры по модернизации электроэнергетики (укрупнение энергокомпаний и образование семи вертикально интегрированных корпораций ВИК — энерго в соответствии с количеством федеральных округов; отказ от ныне принятой модели маржинального оптового рынка продаж электроэнергии по равновесной цене; создание предельно четкого и прозрачного механизма финансирования инвестиционной деятельности) и др.].

ЭнергоРынок, 2011, №4, 17

86. До свидания, солнечные тепловые установки! – в Блайте отказались от технологии концентрации солнечной энергии в пользу фотоэлектрических панелей.

[Solar Millennium AG. Причины и последствия отказа американской компании Solar Millennium AG, занимающейся разработкой крупнейшего в мире центра солнечной энергии, от технологий концентрации солнечной энергии.]

Modern Power Systems, 2011, No 9, 5

87. Компания RWE выходит из проекта Сиадар.

[Scotland. Немецкая энергетическая компания RWE отказалась от участия в одном из крупнейших на планете проектов в области энергии волн Сиадар, поставив тем самым его реализацию под угрозу. Своё решение компания объясняет желанием развивать технологии энергии приливно-отливных течений.]

Modern Power Systems, 2011, No 9, 6

88. Проект компании Drax Biomass получил зелёный свет. [UK. Министр энергетики Великобритании Чарльз Хендри дал согласие на строительство двух станций для генерации энергии из биомассы.] Modern Power Systems, 2011, No 9, 8

89. Солнечная тепловая электростанция башенного типа Sierra. [USA. Компания eSolar запустила первую в США коммерческую солнечную электростанцию башенного типа: общая концепция, конструкция и возможности станции.]

Modern Power Systems, 2011, No 9, 43-44

90. Ветро-солнечная электростанция с комбинированным циклом – первая в своём роде?

[Турецкая компания MetCap Energy Investments планирует строительство первой комбинированной ветро-солнечной электростанции. Завершение этого проекта, известного под названием «Дервиш», планируется к 2015 году. Технологиями энергии ветра будет заниматься корпорация GE (General Electric), строительством солнечной электростанции башенного типа - eSolar.]

Modern Power Systems, 2011, No 9, 44

82. Wolfram Rehbock. Украина обладает выгодным энергетическим потенциалом.

[Arzinger. С энергополитической точки зрения Украина до сих пор интересовала Европу только как страна, осуществляющая транзит российского газа. В статье даётся обзор электроэнергетики и энергетической политики Украины, обладающей собственным выгодным энергетическим потенциалом.]

EW, 2011, No 12, 40-45

83. Разработка однофазного последовательного инвертора солнечной энергии.

[АВВ. Обзор современного состояния солнечной энергетики и достижений компании АВВ в этой области.]

EW, 2011, No 12, 52-57

84. Запуск строительства морской платформы для преобразователя электроэнергии Borwin 2.

[Siemens Energy, TenneT TSO. Осенью 2011 года компания Siemens начала оснащать электротехническими устройствами платформу для преобразователя электроэнергии Borwin 2, которая должна быть готова к эксплуатации к 2013 году. Кроме техники для электропередачи постоянным током высокого напряжения и конвертера, на этой платформе разместятся бытовые и жилые помещения для обслуживающего персонала.]

EW, 2011, No 12, 64

85. Детектор льда для усиления надёжности ветровых электростанций. [Labkotec Oy. Финляндская компания представила детектор льда нового поколения, LID 3300IP, для использования на ветровых электростанциях, работающих в сложных климатических условиях. Работа детектора основана на ультразвуковых сигналах — ослабевание сигнала говорит об образовании льда.]

EW, 2011, No 12, 64-65

85. Энергия приливов и отливов.

[Компания Siemens взяла на себя управление первой в мире коммерческой электростанцией SeaGen, добывающей электроэнергию благодаря приливно-отливным течениям.]

Bulletin SEV/VSE, 2011, No 8, 43

РЕЖИМЫ ЭНЕРГОСИСТЕМ

19. Гвоздев Д.Б., Дроздов А.В., Кочкин В. И. Статические устройства управления режимами энергосистем.

[Рассмотрены различные типы быстродействующих статических устройств регулирования напряжения и реактивной мощности, которые могут быть использованы в качестве исполнительных элементов систем централизованного управления режимами работы электрических сетей].

Электрические станции 2011, №8, 32

20. Молодюк В.В., Исамухамедов Я.Ш., Баринов В.А. Анализ причин масштабных отключений в электросетевом комплексе при экстремальных климатических условиях и меры по преодолению подобных критических ситуаций для надежного электроснабжения потребителей крупных регионов страны.

[Рассматриваются причины массовых нарушений электроснабжения потребителей Московского региона, которые обсуждались на совместном заседании Научного совета РАН по проблемам надежности и безопасности больших систем энергетики и научно — технической коллегии НП «НТС ЕЭС» от 14 апреля 2011 г., а также мероприятия по недопущению массовых ограничений электроснабжения потребителей, которые предстоит выполнить ОАО «Холдинг МРСК» и ОАО «МОЭСК» и др.].

Энергетик 2011, №9, 2

21. Зеленохат Н.И., Хамандош Омар Ахмад Прогнозирование суточного графика нагрузки энергосистемы по новой методике.

[Предлагается методика для построения математической модели оперативного прогнозирования суточного графика нагрузки электроэнергетических систем, которая ориентирована на математическое моделирование суточного прогнозируемого графика нагрузки на следующий год с использованием данных суточного графика нагрузки текущего и предыдущего годов с достаточно высокой точностью].

Вестник МЭИ, 2011, №3, 43

22. Точные причины ЧП на Саяно-Шушенской ГЭС пока не названы. [Прошло два года после аварии на Саяно-Шушенской ГЭС, унесшей жизни 75 человек. На восстановительные работы ГЭС потребуется 37,7 млрд рублей и они должны завершиться к 2014 году. Свою точку зрения на причины возникновения аварии высказали представители различных организаций энергетической направленности].

Академия энергетики, 2011, №5, 14

УПРАВЛЕНИЕ ЭНЕРГОСИСТЕМАМИ

23. Jacek Malko. Аварийное управление важными энергетическими инфраструктурами. [Politechnika Wrocławska. Энергетические инфраструктуры должны стать более гибкими и устойчивыми перед лицом возможных аварийных ситуаций.]

Energetyka, 2011, No 4, 333-335

АВТОМАТИЗИРОВАННЫЙ УЧЕТ ЭНЕРГИИ

24. Компания Black Hills стремится к внедрению умного учёта электроэнергии.

[Компания Black Hills приняла решение интегрировать измерительную систему управления данными (MDMS) в свои системы информационных технологий. В качестве производителя MDMS была выбрана компания Siemens.]

Modern Power Systems, 2011, No 9, 54

РЕЛЕЙНАЯ ЗАЩИТА, ТЕЛЕМЕХАНИКА, СВЯЗЬ

25. Нудельман Г.С., Онисова О.А., Наволочный А.А. Подготовка методической базы цифровых моделей реального времени для целей релейной зашиты.

[Рассмотрены особенности цифрового моделирующего комплекса реального времени RTDS, позволяющие использование его для проведения полного цикла проверки систем релейной защиты и автоматики в условиях, максимально приближенных к реальным условиям эксплуатации. Предложена структура методической базы, необходимой для эффективного выполнения таких испытаний].

Электротехника 2011, №7, 40

26. Шкарин Ю.П. К вопросу выбора порога чувствительности и запаса по затуханию высокочастотных каналов для передачи команд релейной защиты и противоаварийной автоматики.

[Рассматривается выбор порога чувствительности приёмников каналов для передачи сигналов команд релейной защиты и противоаварийной автоматики (РЗиПА). Правильный выбор обеспечивает надежную работу канала РЗиПА с учётом возможности повторения рабочих полос частот для каналов, работающих в общей электрической сети].

Энергетик 2011, №9, 17

76. Suzlon на рынке энергии слабого ветра.

[Компания Suzlon представила две новые модели ветротурбин с общим названием S9X, способные использовать энергию слабого ветра.]

Modern Power Systems, 2011, No 8, 25

77. Бутузов В.А., Брянцева Е.В., Бутузов В.В. Гелиоустановки Краснодарского края.

[Рассмотрены этапы развития гелиотехники в Краснодарском крае за последние 30 лет. Дан анализ применения гелиоустановок с различными солнечными коллекторами разных производителей и приведены их технико- экономические показатели].

Промышленная энергетика 2011, №7, 45

78. Бутузов В.А., Томаров Г.В. Геотермальная система теплоснабжения: первый этап строительства.

[Представлены результаты модернизации системы геотермального теплоснабжения поселка в Краснодарском крае. Приведены схемы геотермального насосного модуля, теплового пункта и узла учета тепловой энергии].

Промышленная энергетика 2011, №8, 51

79. Юсупов К. «Возобновляемая энергетика не конкурент традиционной, но может органично ее дополнить».

[Рассмотрен вопрос активности использования возобновляемых источников энергии (энергия ветра, солнца, воды – в том числе приливов и отливов, геотермальных источников и биомассы) при производстве электроэнергии в $P\Phi$].

Энергоэксперт 2011, №3, 12

80. Ветровая электростанция в Зюдердайх перешла во владение Green Gecco.

[Ветроэлектростанция в Шлезвиг-Гольштейне стала вторым проектом Green Gecco. Вместе с этим, компания планирует инвестировать около 1 млрд евро до 2020 года в развитие возобновляемых источников электроэнергии.]

EW, 2011, No 12, 10-11

81. Биоэлектростанция в Вене может стать могилой для миллионов инвестиций.

[С распространением требований производства электроэнергии экологическим методом биоэлектростанция в Вене может понести серьёзные убытки].

EW, 2011, No 12, 13

ЭЛЕКТРИЧЕСКИЕ АППАРАТЫ

71. Marciej Bernatt. Влияние прямого пуска от сети на износостойкость электродвигателя напряжением 6000 В.

[КОМЕL. Оценка теплового и динамического влияния начального тока на электродвигатели с прямым пуском, примеры типичных повреждённых «беличьих» клеток и рекомендации по эксплуатации электродвигателей с непосредственным включением в сеть.]

Energetyka, 2011, No 4, 335-338

72. Dario Marty. Надёжны ли ваши электроустановки?

[ESTI. В целях безопасности Постановлением об электроустановках низкого напряжения устанавливается контроль за электроустановками и определяются основные условия для всех участников процесса: владельцев, электротехников-специалистов по установке и контролирующих организаций.]

Bulletin SEV/VSE, 2011, No 8, 56-57

ВОЗОБНОВЛЯЕМЫЕ ИСТОЧНИКИ ЭНЕРГИИ

73. Siemens собирается провести предупредительный ремонт ветротурбин.

[В продолжение проекта текущего ремонта ветровых электростанций, начатого в августе 2010 года, компания Siemens решила провести капитальный ремонт и контроль 54-х ветротурбин 3,6МВт, установленных в море.]

Modern Power Systems, 2011, No 7, 5

74. Достижения Welland&Tuxhorn в области возобновляемых источников электроэнергии.

[Welland&Tuxhorn – ведущий производитель клапанов управления и гидравлических систем силового привода – получила заказ на поставку обходных вентилей для солнечной тепловой электростанции в Калифорнии.]

Modern Power Systems, 2011, No 7, 66

75. Oyster 800 – новый преобразователь волновой энергии.
[Шотландская энергетическая компания Aquamarine Power представила новейший преобразователь волновой энергии мощностью 800кВт.]

Modern Power Systems, 2011, No 8, 4

27. Нагай В.И., Сарры С.В., Луконин А.В. Построение быстродействующих релейных защит для электрооборудования высокого напряжения корпусной конструкции.

[Рассматриваются принципы построения быстродействующей релейной защиты с оптическими датчиками информации для электрооборудования высокого напряжения корпусной конструкции на основе анализа информационных признаков короткого замыкания (КЗ) электрической цепи с дугой].

Энергетик 2011, №8, 22

28. Пирогов М.Г. Дифференциально-фазная высокочастотная защита линий 110-220 кВ

[Рассмотрены способы повышения избирательности работы дифференциально-фазной высокочастотной защиты линий 110-220 кВ].

Новости электротехники 2011, №4, 24

29. Долгополов А. и др. Воздушные линии с УШР.

[Статья посвящена исследованиям в области использования управляемых шунтирующих реакторов (УШР) на воздушных линиях и вопросам, которые приходится решать на стадии проектирования (расчет однофазного автоматического повторного включения этих линий, ограничение токов и напряжений до приемлемых значений].

Новости электротехники 2011, №4, 28

30. Корякин А.Г., Овчинникова И.А., Влияние внешних факторов на надежность оптических кабелей.

[Работа посвящена исследованию механизмов влияния внешних факторов на оптические кабели. Приведен литературный обзор статей, посвященных проблемам надежности оптических кабелей и материалов, применяемых для их производства. Показаны схемы испытания оптических кабелей по различным методикам и в разных средах (в том числе и агрессивных). Дан обзор методов оценки надежности оптических кабелей].

Вестник МЭИ, 2011, №3, 52

ЭЛЕКТРИЧЕСКИЕ СЕТИ

31. Franciszek Glowacki. «Умные» сети. Системы регулирования нагруз-ки.

[Instytut Energetyki. Постоянно увеличивающееся мировое потребление электроэнергии говорит о необходимости более эффективного управления потреблением электроэнергии и модернизации стареющей энергетической инфраструктуры. Решением является Smart Grid, «умные» сети». Но, говоря о новом, нельзя забывать старое – уже существующие устройства, которые могут успешно применяться для реализации «умных» сетей, - системы контроля за нагрузкой, известные в Польше как SCA (Acoustic Frequency Control).]

Energetyka, 2011, No 4, 370-372

32. Молодюк В.В., Исамуххамедов Я.Ш., Баринов В.А. Положение о единой технической политике ОАО «Холдинг МРСК» в распределительном сетевом комплексе.

[22 апреля 2011 года на совместном заседании Научного совета РАН по проблемам надежности и безопасности больших систем энергетики и Научно-технической коллегии НП «НТЦ ЕЭС» представлены результаты разработки «Положения о единой технической политике ОАО «Холдинг МРСК» в распределительном сетевом комплексе». Было рекомендовано ОАО «Холдинг МРСК» разработать на основе Положения комплекс технических и методических документов Общества (стандарты организации, технические требования, методические указания и др.), определяющих единые требования к проектированию, строительству, реконструкции, эксплуатации и ремонту объектов распределительных электрических сетей напряжением 0,4-110(220)кВ].

Энергетик 2011, №8, 8

33. Штат Нью-Йорк в поисках «умного» решения для 21 века. [NYISO. Независимый системный оператор штата Нью-Йорк запустил проект по строительству «умных» сетей» и нового диспетчерского пункта энергосистемы рядом с г. Олбани. Таким образом NYISO планирует повысить энергоэффективность и сохранить миллионы долларов.]

Modern Power Systems, 2011, No 9, 54

ТРАНСФОРМАТОРЫ

67. Прохоров А.В., Гольдштейн Е.И. Мониторинг изменений механического состояния обмоток силовых трансформаторов, обусловленных радиальными деформациями.

[Предложен метод мониторинга механического состояния обмоток силовых трансформаторов, позволяющий идентифицировать симптомы появления радиальных деформаций обмоток по изменению угла сдвига фаз между напряжениями пары обмоток и представляющий собой альтернативу методу измерения сопротивления короткого замыкания для использования в нагрузочных режимах].

Электротехника 2011, №7, 20

68. Булыкин П.Ю., Кочкин В.И., Кубарев Л.П. Управляемый шунтирующий реактор нового поколения.

[На подстанциях 220 кВ Прогресс и Когалым МЭС Западной Сибири ОАО «ФСК ЕЭС»впервые в России внедрен разработанный НПЦ «ЭНЕР-КОМ — СЕРВИС» принципиально новый источник реактивной мощности (ИРМ) 110 кВ, +50/-30 Мвар. ИРМ создан на основе двух конденсаторных батарей 110 кВ 25 Мвар каждая и управляемого тиристорами шунтирующего реактора (УШРТ) 110 кВ, 30 Мвар].

Энергоэксперт 2011, №3, 46

69. Испытанно. Надежно. Качественно.

[ЗАО «Энергомаш (Екатеринбург) – Уралэлектротяжмаш» является одним из крупнейших в России разработчиков и производителей трансформаторно-реакторного оборудования. Предприятие производит трансформаторы более 70 лет. Основная специализация – преобразовательные трансформаторы для различных отраслей промышленности, силовые трансформаторы класса напряжения 10,35,110 и 220 кВ. Трансформаторы выпускаются как с масляной, так и с воздушной изоляцией].

Энергополис 2011, №9, 28

70. Андреев К.А. Устройство контроля изоляции силового трансформатора под нагрузкой.

[Описано новое устройство мониторинга и диагностики силового трансформатора без отключения его от сети. Приведены основные схемы и формулы, объясняющие принцип действия устройства].

Промышленная энергетика, 2011, №9, 6

63. Алферов Д.Ф. и др. Комбинированное устройство защиты электротехнического оборудования от импульсных перенапряжений.

[Предложена схема автоматического устройства защиты электрооборудования от импульсных перенапряжений на основе комбинации нелинейных резисторов и вакуумного управляемого разрядника (РВУ). Время срабатывания и уровень ограничения напряжения определяются параметрами нелинейного сопротивления. Высокая коммутационная способность защитного устройства обеспечивается способностью РВУ многократно пропускать токи амплитудой до десятков килоампер при длительности импульса до десятка миллисекунд].

Электричество 2011, №9, 40

64. Крупенин Н.В., Голубев А.В., Завидей В.И. Новые возможности в диагностике электрических машин.

[Проанализированы современные методы и средства диагностики технического состояния асинхронных и синхронных электрических машин. Указаны перспективные направления развития этих методов. Даны рекомендации по выбору оптимальных систем контроля при эксплуатации и обслуживании машин].

Электричество 2011, №9, 45

ЭЛЕКТРИЧЕСКИЕ МАШИНЫ

65. Слышалов В.К., Киселева Ю.А., Кандалов Ю.В. Методика оценки параметров наведенных токов, протекающих в заземлителях при грозовых разрядах.

[Рассматривается методика оценки параметров импульса наведенного тока для случая, когда молния ударяет в землю вблизи воздушной линии (ВЛ) электропередачи. Последняя в расчетной модели представлена системой проводов и заземленных защитных тросов, параллельных друг другу и поверхности земли. В расчете определяется ток в заземляющем проводе, соединяющем заземлитель ВЛ и тросы].

Электричество 2011, №8, 29

66. Шевченко А.Ф., Вяльцев Г.Б. Сравнение возможностей аналитического и численного методов моделирования электрической машины.

[Рассмотрены результаты, получаемые при использовании численного моделирования электрической машины с применением пятимерных зависимостей потокосцепления от токов и геометрической координаты. Приведено сравнение качества этих результатов с результатами классического моделирования в осях dq].

Электротехника 2011, №6, 20

34. Saurabh Gupta. Электроснабжение по принципу «от прибора учёта до денег» повышает конкурентоспособность.

[Everest Group. Система M2C (Meter-to-Cash) помогает электроэнергетическим компаниям справиться со многими рабочими проблемами: оптимизация процесса, конкурентоспособность, внедрение интеллектуального учёта электроэнергии.]

Electric Light&Power, 2011, No 4, 54-55

35. Farah Saeed. Рынок интеллектуальных счётчиков процветает, несмотря на негативные моменты.

[Frost&Sullivan. Преимущества интеллектуальных счётчиков были высоко оценены электроэнергетическими компаниями: в 2010 году процент выхода современных счётчиков на электроэнергетический рынок составил 8,7%, несмотря на некоторые негативные моменты, такие как критический взгляд налогоплательщиков, замедление темпов строительства и проблема сохранения секретности данных.]

Electric Light&Power, 2011, No 4, 56-57

36. Olivier Pauzet. Беспроводная связь на службе у «умных» сетей.

[Sierra Wireless. Поставщики электроэнергии вошли в новую фазу развития «умных» сетей: внедрение интеллектуальных электросчётчиков и установление связи с ними с помощью WWAN (беспроводных глобальных сетей).]

Electric Light&Power, 2011, No 4, 58-60

37. Colin Lippincott. Беспроводная связь для автоматизации распределения электроэнергии в «умных» сетях.

[FreeWave Technologies Inc. Преимущества и недостатки технологий беспроводной связи для оптимизации распределения электроэнергии и уменьшения расходов.]

Electric Light&Power, 2011, No 4, 62-64

ПЕРЕДАЧИ ПОСТОЯННОГО ТОКА. СИЛОВАЯ ЭЛЕКТРОНИКА

38. Евдокимов С.А., Щуров Н. И., Волкова О.Л. Повышение энергоэффективности трехфазных преобразователей напряжения с помощью метода Штейнера.

[Показано применение одной из задач Штейнера в исследовании многофазных преобразователей трехфазного тока в постоянный. Выявлен ряд закономерностей, объясняющих зависимость полной мощности вторичных обмоток трансформаторного преобразователя числа фаз от его топологических параметров. Приведено схемное решение преобразователя, построенного по точкам Штейнера].

Электротехника 2011, №6, 3

39. Udo Niehage. Передача электроэнергии постоянным током высокого напряжения на расстояния до 600 км является наиболее эффективным решением.

[Siemens Division Energy Transmission. Интервью с Udo Niehage о перспективах развития технологии передачи электроэнергии постоянным током высокого напряжения.]

EW, 2011, No 12, 46

40. Cynthia Hengsberger. Посещение центра производства силовых полупроводников компании ABB.

[Electrosuisse. Отчёт о посещении сотрудниками Electrosuisse центра производства силовых полупроводников ABB в городе Ленцбург: полупроводниковые технологии и производство.]

Bulletin SEV/VSE, 2011, No 8, 54

ВОЗДУШНЫЕ И КАБЕЛЬНЫЕ ЛИНИИ

41. Leonard Sanford. BritNed – второе соединительное звено.

[В апреле 2011 года завершился проект BritNed по прокладке кабеля между Великобританией и Нидерландами, сделавший возможным дальнейшую интеграцию Великобритании в энергосистему Европы.]

Modern Power Systems, 2011, No 8, 34-35

42. Непомнящий В.А. Оценка эффективности использования в электрических сетях проводов с повышенной пропускной способностью.

[В статье доказывается, что применение высокотемпературных композитных проводов для повышения надежности и пропускной способности электрических сетей 220 — 110 кВ не всегда однозначно дает положительный эффект и требует серьезных технико-экономических обоснований, учитывающих как наиболее влияющий технико-экономический фактор, вопросы надежности электроснабжения потребителей и ущерб от нарушений их электроснабжения].

Энергоэксперт 2011, №3, 38

59. Корявин А.Р., Волкова О.В., Милкин Е.А. Влияние дождя и формы импульсного напряжения на электрическую прочность линейной полимерной изоляции высокого и сверхвысокого напряжения.

[Представлены результаты экспериментальных исследований разрядных характеристик линейных полимерных изоляторов с силоксановым покрытием для линий электропередачи напряжением 110-500 кВ при воздействии грозового и коммутационных импульсов напряжения обеих полярностей в сухом состоянии и при искусственном дожде].

Электричество 2011, №9, 10

60. Зеткин М.В. и др. Применение прогрессивных решений в разработках газонаполненного оборудования высокого напряжения.

[Проведен анализ особенностей совершенствования и общих тенденций использования прогрессивных решений при создании высоковольтного газонаполненного герметичного оборудования. Проанализированы проблемы при оптимизации основного изоляционного узла в газонаполненном оборудовании высокого напряжения].

Электричество 2011, №9, 20

61. Белкин Г.С., Ромочкин Ю.Г. Создание вакуумной коммутационной аппаратуры на напряжение 72,5 – 220 кВ: состояние и перспективы.

[Дано описание основных направлений развития вакуумной коммутационной аппаратуры высокого напряжения в мире и в РФ. В настоящее время разработаны и выпускаются вакуумные выключатели (колонковые и баковые) на напряжение до 170 кВ включительно. Появление таких выключателей связано с ужесточением требований к экологии].

Электричество 2011, №9, 28

62. Ларин В.С, Лоханин А.К., Шейко П.А. Исследование коммутационных перенапряжений, вызываемых работой вакуумных генераторных выключателей ВГГ-10 и ВГГм-10 на Камской ГЭС.

[Приводятся основные результаты экспериментальных исследований коммутационных перенапряжений при работе вакуумных генераторных выключателей ВГГ-10 и ВГГм-10. Исследования проводились на Камской ГЭС в 2009-2010 гг. для определения воздействий на изоляцию основного электрооборудования и накопления опытных данных. Сделаны выводы о влиянии различных средств защиты на уровни перенапряжений].

Электричество 2011, №9, 31

56. Шлейфман И.Л., Захаров Г.А., Никотинев М.Б. Модернизация воздушных выключателей серии ВВН с установкой шунтирующих бетэловых резисторов.

[Показано, что установка шунтирующих бетэловых резисторов позволяет увеличить номинальный ток отключения воздушных выключателей серии ВВН на напряжение 110 – 330 кВ до 31,5 кА. Приведены значения сопротивления резисторов и методы их монтажа, а также мероприятия, которые должны быть выполнены для модернизации всех типов выключателей].

Электрические станции 2011, №8, 50

57. Испытанно. Надежно. Качественно.

[ЗАО «Энергомаш (Екатеринбург) — Уралэлектротяжмаш» является одним из крупнейших в России разработчиков и производителей трансформаторно-реакторного оборудования. Предприятие производит трансформаторы более 70 лет. Основная специализация — преобразовательные трансформаторы для различных отраслей промышленности, силовые трансформаторы класса напряжения 10,35,110 и 220 кВ. Трансформаторы выпускаются как с масляной, так и с воздушной изоляцией].

Энергополис 2011, №9, 28

58. Системный оператор провел натурные испытания Единой энергосистемы России.

[21 сентября ОАО «Системный оператор Единой энергетической системы» успешно провел натурные системные испытания по определению частотных свойств ЕЭС России и энергосистем стран — участниц параллельной работы с ЕЭС России, а также качества регулирования частоты при ее отклонениях в реальных условиях. Испытания позволили определить характеристики ЕЭС при возникновении небалансов активной мощности, проверить фактическое действие и эффективность систем первичного регулирования частоты на электростанциях, проверить участие в нормированном первичном регулировании частоты энергоблоков, отобранных для участия в рынке системных услуг].

Вести в электроэнергетике 2011, №5, 49

43. Тарасов А.Г. Современное техническое состояние воздушных ЛЭП России. Проблемы, перспективы и стратегия их технического обслуживания.

[В условиях катастрофического старения воздушных линий и постоянного недофинансирования работ по планово-предупредительному их ремонту возникает необходимость проведения диагностических работ на элементах ВЛ и необходимость перехода к новой стратегии обслуживания существующих ВЛ. Приведена таблица существующих и возможных стратегий ТО и Р воздушных линий для предприятий электрических сетей, а также их достоинств и недостатков].

Вести в электроэнергетике 2011, №5, 19

44. Дубицкий С. Грозозащитный трос с оптическим волокном. [Описан метод и результаты моделирования нестационарного электромагнитного и температурного поля в оптическом грозотросе].

Новости электротехники 2011, №4, 48

45. Lucien Deschamps. Jicable: немного истории.

[Prospective 2100.30-летняя история Международной конференции «Jicable» по изолированным силовым кабелям: технические положения; создание конференции; первая конференция Jicable; график конференций; секции Jicable; публикация материалов конференций; Jicable'11.]

Revue de l'électricité et de l'électronique, 2011, No 3, 15-20

ЭЛЕКТРОСТАНЦИИ И ПОДСТАНЦИИ

46. Luigi Magnaguagno. Устройство Ovation для улучшенного управления гидроэлектростанциями.

[Hydro Dolomiti Enel. Установка экспертной системы управления Ovation на гидроэлектростанции Avio в Италии позволила повысить продуктивность и значительно улучшить управление станцией.]

Modern Power Systems, 2011, No 8, 44-45

47. Липаткин В.А., Стенников Д.Е., Шишигин С.Л. Особенности проектирования заземляющего устройства электрической подстанции 110 кВ в грунте со скальным основанием.

[Анализируются особенности проектирования заземляющего устройства (ЗУ) электрической подстанции в грунте с изолирующим (скальным) основанием. Показано, что при горизонтальном растекании тока в подобном грунте имеет место логарифмическое убывание потенциала точечного источника, возрастает сопротивление заземляющего устройства, уменьшаются коэффициенты использования его элементов, возникают проблемы с выносом высокого потенциала за территорию подстанции. Исследованы пути снижения стационарного сопротивления ЗУ].

Электричество 2011, №8, 23

48. Ненашев М.В., Тычинский А.Ю., Вага Н.А. Перспективы развития комплектных трансформаторных подстанций.

[Рассматриваются последние тенденции развития комплектных трансформаторных подстанций (КТП) – создание одноразовых вакуумных дугогасительных камер на напряжение 110 кВ и выше, а также перспективные разработки в области нанотехнологий, которые могут стать основой создания комплектных распределительных устройств (КРУ) нового поколения, поиск наноструктурированных материалов и промышленное освоение твердой нанокомпозитной изоляции].

Энергетик 2011, №8, 45

49. Строительство более 350 ТЭЦ с мощностью 5000 Мвт.

[Немецкие компании AGFW, BDEW, VKU и VIK пришли к выводу, что рынок тепловой и электрической энергии уже обладает достаточным потенциалом для достижения геополитических целей правительства — строительства новых и модернизации уже существующих ТЭЦ.]

EW, 2011, No 12, 6-7

50. Фишман В. Система питания собственных нужд подстанций 110-220 кВ.

[Рассмотрены вопросы построения системы собственных нужд подстанций 110-220 кВ, выбора оборудования и защит].

Новости электротехники 2011, №4, 34

51. RSS установила блоки временного электроснабжения 80 МВА в Омане.

[Шотландская компания завершила строительство блоков временного электроснабжения, которые будут поддерживать электрическую сеть Омана во время летних пиковых нагрузок. Кроме того, компания предоставила технический персонал, операторов и инженеров-проектировщиков для обеспечения бесперебойного снабжения электроэнергией.]

Modern Power Systems, 2011, No 9, 53

ОБОРУДОВАНИЕ. ИСПЫТАНИЯ. ИЗОЛЯЦИЯ

52. Yan Bin, Deng Dayong, He Ximei, Wu Tongsheng, Wang Zhihui, Li Shengping, Wang Hangli, Liu Senyu. Портативное рентгенографическое оборудование для мониторинга и диагностики элегазовых распределительных устройств.

[Qinghai Electric Power Research Institute, GE Energy, Measurement & Control Solutions. Недавние исследования в Китае показали, что современные портативные рентгенографические устройства могут успешно использоваться для диагностирования систем GIS.]

Modern Power Systems, 2011, No 8, 30-32

53. Модифицированный диагностическая станция стала быстрее и легче.

[BAUR Prüf и Messtechnik GmbH модернизировали передвижную станцию для диагностики состояния DC кабелей 80кВ или 57кВrms. Новая система сделает возможным автоматическое тестирование кабелей, диагностику и измерение частичных разрядов, определение места повреждения.]

Modern Power Systems, 2011, No 8, 46

54. Автоматическая диагностика изоляции.

[Краткий обзор новой модели системы диагностики изоляции 12кВ серии DELTA4000, разработанной компанией Megger.]

Modern Power Systems, 2011, No 8, 47

55. Дуальный микро-инвертер 480Вт.

[Direct Grid Technologies разработала новой дуальной микроинвертер Gemini в соответствии с требованиями уровня мощности электроэнергетического сектора и коммерческого/промышленного рынка].

Modern Power Systems, 2011, No 8, 46