139. Гольдштейн Е.Н., Сулайманов А.О. Развитие работ профессора О.А.Маевского по реактивной мощности.

[ЭЛТИ ТПУ. Определение реактивной мощности через площади вольтамперных характеристик. Измерения цифровыми методами, для однофазных и трехфазных цепей при несинусоидальных напряжениях и токах.]

Электричество, 2009, No 12, 74-78.

140. Виркунен В. Призвание инженера - быть проводником инноваций. (С.Сеу - председатель правления ОАО "Инженерный центр ЕЭС").

[Потребность в инжиниринговых услугах – создание научно- технических и инженерных центров, инжиниринговых компаний. Необходимость - выполнение небывалых задач по вводу новых мощностей.]

Инновации в электроэнергетике, 2008, No 1, 40-43.

141. Нежданова Н.Н. Психофизиологическое обеспечение надежности работы оперативного персонала на предприятиях ТЭК.

[Особенности человека и требования к профессии, накопление стресса - рост риска ошибочных действий. Простейший тест на выявление эмоционального профессионального "выгорания".]

Энергетик, 2009, No 11, 7,8.

142. LaSelva J., Thrasher J. Укрощение штормов.

[Точное предсказание погоды позволяет своевременно мобилизовать персонал и подготовиться к борьбе со стихией. Принципы и средства прогнозирования погоды.]

Transm.and Distr.World, 2009, No 11, 44-50.

143. Burdet G. Автоматика подстанции установки расщепления атомов.

[CERN – Hadron Collider. Описание исследовательской лаборатории, схема каскада ускорителей, подстанция 400/66/18 кВ 490 МВА. За цикл 18 секунд мощность изменяется на 150 МВт при энергии луча 450 ГэВ.]

Transm.and Distr.World, 2009, No 11, 58-64.

144. Woelfel M. Электронные переводчики.

[Center for Art and Media, Karlsruhe. Современное состояние автоматического перевода с голоса на голос. История развития и примеры применения. Сравнение электронного переводчика с человеком.]

Bulletin SEV\VSE, 2009, 93, No 11, 9-12.

ОАО «НТЦ электроэнергетики»

АННОТИРОВАННЫЙ БЮЛЛЕТЕНЬ СТАТЕЙ ИЗ ЖУРНАЛОВ ПО ЭЛЕКТРОЭНЕРГЕТИКЕ

(Техническая библиотека)

Nº 3

Москва, 2010 г.

СОДЕРЖАНИЕ

ОБЩАЯ ЭНЕРГЕТИКА	3
ЭНЕРГОЭФФЕКТИВНОСТЬ	5
РЕФОРМА В ЭЛЕКТРОЭНЕРГЕТИКЕ	6
РЕЖИМЫ ЭНЕРГОСИСТЕМ. АВАРИИ	7
УПРАВЛЕНИЕ ЭНЕРГОСИСТЕМАМИ	9
АСДУ. ИЗМЕРЕНИЯ И УЧЕТ ЭЛЕКТРОЭНЕРГИИ	11
РЕЛЕЙНАЯ ЗАЩИТА, ТЕЛЕМЕХАНИКА, СВЯЗЬ	12
ЭЛЕКТРИЧЕСКИЕ СЕТИ	14
ВЛПТ. FACTS. СИЛОВАЯ ЭЛЕКТРОНИКА	15
ВОЗДУШНЫЕ И КАБЕЛЬНЫЕ ЛИНИИ	16
ЭЛЕКТРОСТАНЦИИ И ПОДСТАНЦИИ	17
ОБОРУДОВАНИЕ. ИСПЫТАНИЕ. ИЗОЛЯЦИЯ	18
ЭЛЕКТРИЧЕСКИЕ МАШИНЫ. ГЕНЕРАТОРЫ	20
ЭЛЕКТРОДВИГАТЕЛИ, ЭЛЕКТРОПРИВОД	21
ТРАНСФОРМАТОРЫ	22
ЭЛЕКТРИЧЕСКИЕ АППАРАТЫ	23
ВОЗОБНОВЛЯЕМЫЕ ИСТОЧНИКИ ЭНЕРГИИ	25
ДЕЦЕНТРАЛИЗОВАННАЯ ЭНЕРГЕТИКА	27
ПРОЧИЕ ВОПРОСЫ	28

Аннотированный бюллетень новых поступлений в техническую библиотеку составлен 08.04.2010 по материалам отечественной и зарубежной литературы, поступившей в конце 2009 г. – начале 2010 г.

Исполнители – Алексеев Б.А., Гуриненко Г.Г., Ющенко Е.И.

134. Eichler M. Преобразователь для прибрежной ветроустановки. [Мощность ВЭУ - 5 МВт, ветрокомплекс - Alpha Ventus, в 45 км север- нее острова Боркум в Северном море. Тип преобразователя - PCS-6000-4Q, разработка АВВ. Описание схемы и системы управления.]

Bulletin SEV\VSE, 2009, 93, No 12, 9-13.

ДЕЦЕНТРАЛИЗОВАННАЯ ЭНЕРГЕТИКА

135. Киселев В.П., Дубинин В.С., Лаврухин К.М. Автономная генерация - способ обеспечения энергетической безопасности России.

[МАИ. В противовес предложениям Б.И.Кудрина (Промэнергетика 12/2008) предлагается использование автономных газовых мини-ТЭЦ, а не тянуть ЛЭП. Агрегаты - на основе двигателей внешнего сгорания.]

Промышленная энергетика, 2010, No 1, 59,60.

136. Гаврищенко М. Слова не расходятся с ветром (Шеин В. ("Рус-Гидро")

[Многофункциональный энерготехнологический комплекс (МЭК) - 450 кВт с дизелем на любом виде топлива и ветроустановкой. Работа в широком диапазоне скоростей - высокий КПД и использование ВЭУ.]

Инновации в электроэнергетике, 2008, No 1, 64,65.

ПРОЧИЕ ВОПРОСЫ

137. Филин В.С. История энергетики Сибири в значках и медалях.

[Искусство плюс образовательные функции - основы фалеристики. Знаменательные даты энергетики Сибири и отражающие их знаки - четыре цветных витрины. Технические особенности вводов электростанций.]

Электрические станции, 2009, No 12, 53-59.

138. Карякин А.И., Ковалев С.И., Леньшин В.И., Листратов Я.И., Свиридов В.Г., Свиридов Е.В. Автоматизированная система научных исследований технического университета - АСНИ МЭИ.

[Ну вообще-то не исследований, а информационно-вычислительной помощи им: список кафедр, техническая база, модернизация и автоматизация лабораторной базы, автоматизация эксперимента и т.п.]

Вестник МЭИ, 2009, No 6, 221-228.

128. Испытания приливной установки SeaGen.

[Установка 1,2 МВт с двумя пропеллерами, погруженными в воду и вращающимися с частотой 12-14 об/мин, работает вблизи Strangford Lough с апреля 2008 г. Владелец - OFGEN. Работает 22 ч в сутки.]

Modern Power Systems, 2009, No 8, 22.

129 Steinhusen C. Ветроэнергия Северного моря пришла на берег.

[С основной сетью соединен ветрокомплекс 400 MBт Borwin 1. Кабель » 150 кВ длиной 200 км выполнен по типу HVDC-Light (ABB). Основная сеть в Германии выполнена на 220/380 кВ общей длиной 10700 км. Стоимость проекта - 400 млн долл.]

Transm.and Distr.World, 2009, No 11, 30-36.

130. Sanford L. Новая солнечная энергоустановка в Абу Даби.

[Энергокомпания Masdar - установка с солнечными концентраторами Shams 1 мощностью 100 МВт $_{\rm эл}$.Паровая турбина 125 МВт. Ввод - 2011 г. Вообще на этом месте предполагается постройка комплекса мощностью 2 ГВт.]

Modern Power Systems, 2009, No 8, 21.

131. Sanford L. Успехи электростанций на башнях.

[Солнечно-тепловые электростанции разных конструкций - обзор. В апреле введена в работу СЭС 20 МВт PS20 вблизи Севильи. Первая СЭС 11 МВт с башней 115 м типа PS10 работает с 2007 г. там же. Дальнейшие планы - две СЭС по 50 МВт в Андалузии.]

Modern Power Systems, 2009, No 8, 18-21.

132. Кабель высокого напряжения для связи с прибрежным ветрокомплексом.

[Nexans делает кабель для ВЭК Lincs (Линкольншир, Англия). 2 кабеля 145 кВ с СПЭ-изоляцией, каждый длиной 50 км, имеют сечение 630 кв.мм, на наземном участке - 1200 кв.мм. Поставка - в 2011 г.]

Bulletin SEV\VSE, 2009, 93, No 12, 44.

133. Piebalgs A. Источник возобновляемой энергии, опора европейской политики в энергетике.

[European Commission. Динамика развития использования ВИЭ, план EC - "20% к 2020 г." План развития технологий в электроэнергетике 2007 г. Перспективы на 2020 г. по отдельным видам ВИЭ.]

Electric Light & Power, 2009, No 3, 36,38.

ОБЩАЯ ЭНЕРГЕТИКА

1. Ашинянц С.А. Государства Западной Европы: экономика и энергетика (часть вторая).

[Энергетика 14 стран ЕС - разница в энергетике этих стран - развитие, энергетический баланс, производство и распределение электроэнергии. (Великобритания, Германия, Франция и др.)]

Энергохозяйство за рубежом, 2009, No 6, 2-32.

2. Родионов В. Инновационная миссия - выполнима (Конев А.) [Ген.директор НП "ИНВЭЛ" - "Инновации в электроэнергетике". (создано в 2003 г.) Задачи Партнерства и перспективы развития инновационной деятельности. Основное - менеджмент программ НИОКР.] Инновации в электроэнергетике, 2008, No 1, 20-22.

3. Лагерев А.В., Ханаева В.Н., Смирнов К.С. Об обеспечении возможного экспорта электроэнергии из России в Китай.

[С начала 2009 г. экспорт - 2,4 млн кВтч/сут. По генеральной схеме - освоение Южно-Якутского ГЭК мощностью 8,9 ГВт, ГРЭС региона. ВЛ для экспорта 5 ГВт электроэнергии.]

Энергетик, 2009, No 11, 4-6.

4. Евсеев А.В. История образования Иркутской энергосистемы.

[1896 г. - ГЭС в районе Ленских приисков. Вводы ГЭС и ТЭС при Советской власти. 1954 г. - Иркутскэнерго, Братская ГЭС, Усть-Илимская ГЭС. ОАО "Иркутскэнерго" - одна из передовых по техническому оснащению современной техникой связи и управления.]

Электрические станции, 2009, No 12, 50-53.

5. Аполонский А.Ю. Об оценке качества прогнозных систем для анализа энергетических рынков. [Перечисление зарубежных энергетических прогнозов. Проблемы при разработке прогнозов и методики их решения. Этапы программы исследований, нужных для создания методики оценки качества прогнозов.]

Известия АН Энергетика, 2009, No 6, 120-128.

6. По страницам зарубежных журналов.

[Краткие аннотации статей по наиболее интересным проблемам электроэнергетики, опубликованным в журналах 2009 г. - проблемы электрических сетей и высоковольтных ЛЭП.]

Энергохозяйство за рубежом, 2009, No 6, 36.

7. Волков Э.П., Баринов В.А., Маневич А.С. Перспективы развития электроэнергетики России на период до 2030 г.

[ЭНИН. Большие достижения и некоторый спад. Проблемы отрасли, стратегические цели до 2030 г. Нужны механизмы государственного и корпоративного управления совместной работы собственников, глобальное целостное управление планированием и функционированием энергосистем.]

Вести в электроэнергетике, 2009, No 5, 5-22.

8. Римов А.А. О современном состоянии отраслевой статистики по надежности и техническому использованию энергооборудования. [ВТИ. Реформа энергетики привела к потере банка по надежности, например, приказ Минэнерго No20 (2008) ограничил данные усредненными. Необходимо восстановить базы данных по надежности в нужном для отрасли объеме.]

Электрические станции, 2009, No 12, 2-5.

9. Малышев Дм. Нормативная база - основа эффективной работы (Березовский К. - Комиссия по техническому регулированию ИНВЭЛ)

[После ликвидации РАО все функции по созданию стандартов - на "ИНВЭЛ". Технические регламенты - Национальные стандарты - Стандарты организаций, кто утверждает и что они регламентируют.]

Инновации в электроэнергетике, 2008, No 1, 28,29.

10. Горшкова А. Будущее энергетики - саморегулирование.

["ИНВЭЛ". Жизнеспособность Федерального закона о техническом регулировании показывает непрекращающаяся полемика вокруг него (!). Главное - он стал стимулом к масштабной и архиважной работе с огромным массивом документов. Нужна саморегулируемая организация в области технического регулирования в электроэнергетике. (на базе ИНВЭЛ).]

Инновации в электроэнергетике, 2008, No 1, 30,31.

11. Концепция развития инновационной деятельности в электроэнергетике.

[Извлечения из Приказа РАО от 08.06.2007 г. Создатели Концепции - ЗАО "РОСЭКО", ИПК Госслужбы, РНИС (НИИ интеллектуальной собственности) Цель концепции (!), анализ готовности к инновационной деятельности НИИ и энергокомпаний, механизмы финансирования, бизнес-процессы.]

Инновации в электроэнергетике, 2008, No 1, 70-78.

ВОЗОБНОВЛЯЕМЫЕ ИСТОЧНИКИ ЭНЕРГИИ

123. Гнатусь Н.А. Проблемы и перспективы использования петрогеотермальной энергии в России.

[Геотермальная энергия - использование горячей воды, петрогеотермальная - раскаленных горных пород. Потенциал гидротермальной - всего 1%. Петрогеотермальные источники в верхних слоях (10-12 км) имеют ресурс в несколько тысяч раз больше топливного ресурса Земли. Техническое осуществление использования этого ВИЭ.]

Энергосбережение, 2009, No 8, 63-66.

124. Тугов А.Н., Вихрев Ю.В. Опыт США в области использования энергетического потенциала твердых бытовых отходов.

[Доход от сжигания твердых бытовых отходов с получением энергии. Установки WTE - waste-to-energy. В США за счет сжигания БТО сокращается выброс CO2 на 30 млн т в год. Существующие установки и их параметры.]

Энергетик, 2009, No 11, 25-29.

125. Wyland J. Является ли возобновляемая энергия недоступной мечтой? Ученые предлагают свое понимание использования ветра.

[Environmental Systems Pesearch Institute. Планы развития ветроэнергетики в США - в следующее десятилетие - 20% всего производства электроэнергии дадут ВЭУ. Использование геоинформационных систем.]

Electric Light & Power, 2009, No 2, 44-46.

126. Jeff A. Ветроэнергетика: движущая политика и точка зрения пользователя.

[AWEA. 2008 г., установленная мощность в США - 25170 МВт,и прирост мощности за 2008 г. - 42% (в 2007 г. - 35%). Поддержка Правительства - установка DOE в мае 2008 г. - "20% энергии за счет ветра в 2030 г." Потребность в усилении сети.]

Electric Light & Power, 2009, No 3, 34,35,38.

127. Испытание приливной энергоустановки в Канаде (British Columbia). [Установка имеет турбину вентиляторного типа с горизонтальным генератором 65 кВт с постоянными магнитами (без редуктора). Диаметр коммерческой модели - 5 м. Ввод - 12.2006. (Компания Alstom Hydro).] **Modern Power Systems, 2009, No 8, 22.**

117. Плюшко Ю.П. Внедрение и диагностический контроль элегазового оборудования в юго-западной ЭС ГП НЭК "Укрэнерго".

[Отдел модернизации НЭК. Мониторинг и периодический контроль оборудования (36 SF6-выключателей). Информационная система (ЭВМ+БД+Б3+ +экспертная система). Таблица ее задач.]

Электрические сети и системы (Киев), 2009, No 5, 47-53.

118. Колычев А.В., Попова Ю.С., Халилов Ф.Х., Титков В.В. Проблемы конструирования экранной арматуры высоких классов напряжения. [ОАО "Позитрон", ОАО "СевзапНТЦ", ГПУ СПб. Выравнивающие экраны ОПН разных типов. Выбор конфигурации экрана. Главное, чтобы для потенциала div(egrad U)=0.]

Энергетик, 2009, No 11, 13-16,

119. Воск J. Сверхпроводниковые ограничители ТКЗ испытаны в Великобритании. [Nexans SuperConductors, Paris. Первый в мире ВТСПОТКЗ - резистивного типа, 10 кВ/10 МВА, CURL10, на ВЅССО 2212. (2004 г.) Следующий этап - испытывается коммерческая модель SFCL - три установки на двух вариантах ВТСП - ВЅССО и УВСО на 11 кВ, 11 кА макс, 4,2 кА эфф.]

Modern Power Systems, 2009, No 8, 14,15.

120. Noural A. Накопители энергии в масштабах потребителя.

[АЕР. Как часть технологии Smart Grid, накопители у потребителей электроэнергии на аккумуляторах NaS, сохранение мегаватт-часов с мощностью сотен мегаватт в течение многих часов. Широкое применение в связи с новыми разработками аккумуляторов и ростом доли ВИЭ в сетях.]

Transm.and Distr.World, 2009, No 11, 80.

121. Сверхпроводниковый ограничитель ТКЗ на электростанции Boxberg. [С начала ноября работает ВТСП-ОТКЗ. Владелец - Vattenfall Europe Generation AG. Рабочая температура -200°С при сопротивлении, равном нулю, при КЗ сопротивление растет в сто раз.]

Bulletin SEV\VSE, 2009, 93, No 12, 42.

122. Киреева Э.А. Новая серия промышленных трехфазных стабилизаторов напряжения СТС-5.

[Компании "РУСЭЛТ". Мощность стабилизаторов - от 16 до 300 кВА. Достоинства, условия эксплуатации, возможности поддержания качества электроэнергии.]

Промышленная энергетика, 2009, No 12, 51,52.

12. Bodell Т. Поддержка политики Обамы в области энергетики - решения для экономистов.

[Основы - снижение выбросов угольных ТЭС, поддерживающие тарифы, резервы мощности, возобновляемые источники энергии, "сильные" сети - более эффективное управление режимами и контроль потребления.] Electric Light & Power, 2009, No 2, 16.

13. Keller J., Schmid U. Статистика несчастных случаев в энергетике Швейцарии в 2008 г.

[Примеры повреждений, связанных с поражением персонала. Статистическая таблица. По сравнению с предыдущими годами число несчастных случаев снизилось.]

Bulletin SEV\VSE, 2009, 93, No 11, 35-42.

ЭНЕРГОЭФФЕКТИВНОСТЬ

14. О проекте энергетической стратегии России на период до 2030 г.

[Заседание Правительства РФ 27.08.2009. Три этапа реализации Энергетической стратегии - преодоление кризиса (до 2015 г.), повышение энергоэффективности (до 2022 г.), создание задела для нетопливной энергетики (до 2030 г.).]

Вести в электроэнергетике, 2009, No 5, 3-5.

15. Бирюков П.П. Энергетическая стратегия Москвы на период до 2025 года. [Важность энергосбережения, пример: затраты на единицу продукции составляют у нас на энергию 40%, в США 18%, в Китае 19%, в развитых странах - еще меньше. Экономия в ЖКХ. Воспитание бережливости.]

Энергосбережение, 2009, No 8, 14-16.

16. Ремезов А.Н. Комплекс мероприятий по энергосбережению в Москве. [Гендиректор ОАО "МОЭК". СПЭ-трубопроводы вместо стальных, регулируемый привод насосов теплоснабжения, автоматизированный учет энергоносителей, пропаганда энергоэффективности.]

Энергосбережение, 2009, No 8, 22-24.

17. Башмаков И.А. Повышение энергоэффективности в жилищном секторе. [Объем ремонтов зданий упал в 4 раза по сравнению с 1990 г., по сравнению с 1970 г. в 7 раз. Проблема теплоснабжения - неэффективность нашего отопления.

Энергосбережение, 2009, No 8, 40-51.

18. Kuhn T.R. Экономическое стимулирование в энергетике.

[Edison Electric Inst. Стимулируются: повышение эффективности использования электроэнергии, применение источников возобновляемой энергии, снижение выбросов в атмосферу, технологии переработки угля и накопления энергии, создание тренажеров и развитие "сильных"сетей.]

Electric Light & Power, 2009, No 2, 20,21.

19. Gabriel M. Энергоэффективность превыше всего.

[Факторы, показывающие важность ЭЭ для промышленности: конфликт топливо/мощность, развитие интеллектуальных технологий, управление потреблением электроэнергии, развитие бизнес-моделей, связь с демографией.]

Electric Light & Power, 2009, No 2, 30, 42.

20. Правильный свет.

[К отмене оборота ламп накаливания 100 Вт и более с 2011 г. - Федеральный Закон об энергосбережении. Недостатки ламп накаливания, очень кратко - что будем иметь вместо этих ламп.]

Энергосбережение, 2010, специализир.журнал No 1, 58-61.

РЕФОРМА В ЭНЕРГЕТИКЕ

21. Васин В.А., Тогоев А.М., Устинова Л.М. Активизация инновационной деятельности на промышленных предприятиях.

[МИЭМ, РГИИС. Сворачивание большинства машиностроительных предприятий России. Наличие невостребованного высокого научного потенциала, возможности использования интеллектуальных ресурсов.]

Приводная техника, 2009, No 6, 18-22.

22. Васин В.А., Кравцова В.И. Тогоев А.М., Устинова Л.М. Проблемы управления инновационной деятельностью.

[Механизмы выявления и оборота ценных знаний, стратегии использования интеллектуальных ресурсов. Задачи - совершенствование законодательства и развитие инфраструктуры инновационной деятельности.]

Приводная техника, 2009, No 6, 22-26.

23. Китушин В.Г., Бык Ф.Л. Критический анализ реформирования электроэнергетики России.

[ГТУ Новосибирск. Подробно о разнице реформирования и реорганизации. Надежда на адекватность закона "Об электроэнергетике" стоящим проблемам.

Электрические станции, 2009, No 12, 6-8.

111. Зенова Е.В. Оценка состояния изоляционных промежутков силовых трансформаторов по обобщенному индексу поляризации.

[МЭИ. Целесообразность профилактических испытаний изоляции трансформаторов. Арсенал диагностических методов - усложнение оценки состояния изоляции. Лучшая оценка - по зависимости tl(t)=f(t) или tpi.]

Электричество, 2009, No 11, 26-29.

112. Рычков С.Н. Литая изоляция в трансформаторах. [ОАО СЗТТ. Имеются в виду измерительные трансформаторы до 35 кВ. Использование в качестве изоляции полиуретановых эластомеров, сравнение с эпоксидной изоляцией, комбинация этих решений.]

Электрические сети и системы (Киев), 2009, No 5, 54-56.

113. Калаущенко В. "Электрозавод" раскрыл свои планы. [Доклад на семинаре "Электро-2008" - модернизация производственных площадок в Москве, Запорожье, Уфе (новый завод трансформаторов 35-220 кВ и КТП - 30 ГВА), Партнер - Сименс.] Энергоэксперт, 2008, No 3, 10,11.

ЭЛЕКТРИЧЕСКИЕ АППАРАТЫ

114. Ермилов Ф.М., Куприянович Ю.М., Ермилов Ф.М. Трансформаторно-преобразовательные подстанции для питания оконечных участков однофазных распределительных электрических сетей.

[МГОУ, фирма "Электра". Предложена замена трехфазной четырехпроводной распределительной сети с КТП 10/0,4 кВ на однофазную двухпроводную сеть с преобразовательными КТПП 10/0,23 кВ.]

Промышленная энергетика, 2009, No 12, 6-10.

115. Щуров Н.И., Штанг А.А., Спиридонов Е.А., Чумачёв Д.А. Повышение эффективности использования накопителей энергии в электротранспортном комплексе.

[Режимы работы транспортной сети при наличии накопителей. Выгоды от такой схемы. Имеется в виду емкостной накопитель. Моделирование с помощью Matlab Simulink.]

Электротехника, 2009, No 12, 23-26.

116. Комплектное распределительное устройство "Вертикаль". [Таврида Электрик Украина. КРУ 6-10 кВ на 1000 и 2000 А и соот-

ветственно, 20 и 31,5 кА. Вакуумные выключатели ВВ/ТЕL-10.]

Электрические сети и системы (Киев), 2009, No 5, 10-12

106. Панкратов В.В., Котин Д.А. Бездатчиковый асинхронизированный синхронный электропривод с векторным управлением.

[Терминология - АСМ как частный случай МДП. От АД с фазным ротором к АЭПДП - асинхронному электроприводу с двойным питанием. Реализация АЭПДП на базе преобразователя частоты "ЭРАТОН-ФР".]

Электротехника, 2009, No 12, 13-19.

107. Зиновьев Г.С., Удовиченко А.В. Энергосберегающие устройства плавного пуска двигателей переменного напряжения.

[Улучшение пускового тока двигателя плюс снижение дополнительного потребления реактивной мощности сети. Схема трехфазного двухзонного тиристорного регулятора переменного напряжения.]

Электротехника, 2009, No 12, 52-55.

108. Брейдо И.В., Гурушкин А.В. Исследование принципов распределения нагрузок в электромеханических системах с многодвигательным частотно-управляемым электроприводом.

[Карагандинский ГТУ. Проблема для многодвигательного привода - неравномерное распределение нагрузок между двигателями. Необходимость системы равномерного распределения моментов.]

Приводная техника, 2009, No 3, 29-33.

109. Однокопылов Г.И., Образцов К.В., Однокопылов И.Г. Принципы обеспечения "живучести" электроприводов переменного тока.

[Живучесть - сохранение ограниченной работоспособности при отказе некоторых компонентов. Способы обеспечения живучести для АД-приводов и приводов на вентильных двигателях. Неисправность типа "обрыв фазы".]

Электричество, 2009, No 12, 51-57.

ТРАНСФОРМАТОРЫ

110. Кустарев Г.Г., Нигметзянов Р.И., Фатюхин Д.С., Гаглоев Д.А. Разработка мобильного комплекса очистки грунта от нефти и нефтепродуктов с применением ультразвукового метода очистки.

[МАДИ. Проблема - экологическое равновесие, загрязнение может быть причиной катастрофы. Обзор средств и методов очистки, комплекс МКОН-1 разработки МАДИ. Производительность - песок 0,3 мм - 17 м³/ч]

Приводная техника, 2009, No 2, 2-7.

24. Липатов Ю. "Экономический подъем России невозможен без четкого представления о реальном состоянии энергетического комплекса" [Комитет ГД РФ по энергетике. "Реформа дала толчок развитию электроэнергетики, теперь нужно возродить электро- и энергопромышленность. Есть возможность привлечения масштабных инвестиций в отрасль."]

Вести в электроэнергетике, 2009, No 5, 48,49.

25. Вантеев А.И. Об основных недостатках в эксплуатации электросетей после реформирования.

[Большое число ошибок персонала и причины этого, вызванные реформой в ФСК - снижение объемов и качества ТО и Р, из-за централизации - потери времени на переезды, некомплект служб, экономисты и менеджеры - превыше инженеров, ограничения финансирования ТО и Р и др.]

Энергетик, 2009, No 11, 30,31.

26. С.Шматко и А.Чубайс сетуют на кризис...

[Программы инвестиций российскими компаниями по Минэнерго могут измениться, но планы новых собственников меняться не могут - штраф! По "Роснано" (заявки по 690 проектам) возможно торможение реализации проектов.]

Инновации в электроэнергетике, 2008, No 1, 13.

27. Порет Э. Последний киловатт, или второе пришествие ГОЭЛРО. [Пятый Форум "Развитие российской энергетики" - "...возвращение к дореформенному формату ответственности за энергетику в лице отдельно взятого министерства получает конкретные очертания. Важнейшее изменение - поворот в сторону к инновационной составляющей развития отрасли."...]

Инновации в электроэнергетике, 2008, No 1, 14-17.

РЕЖИМЫ ЭНЕРГОСИСТЕМ, АВАРИИ

28. Пикин С.С. Ситуация в энергосистеме Сибири после аварии на Саяно-Шушенской ГЭС зимой 2009-2010 гг. (Семинар 16.09.2009)

[Фонд энергетического развития. Ввод государственного регулирования в электроэнергетике. Графики с указанием замещения мощности Саяно-Шушенской ГЭС, дефицит - до 8,5 ГВтч/сутки. Меры по покрытию дефицита.]

Вести в электроэнергетике, 2009, No 5, 27,28.

29. Создание Парламентской комиссии по расследованию аварии на Саяно-Шушенской ГЭС.

[Задача - выяснить, насколько объективны выводы правительственной комиссии, изучить истинные причины аварии и довести до общественности эту информацию. Глава комиссии - гидростроитель с 30-летним стажем В.А.Пехтин.]

Вести в электроэнергетике, 2009, No 5, 47,48.

30. Шульгинов Н.Г. Об обеспечении надёжного электроснабжения ОЭС Сибири в связи с аварией на Саяно-Шушенской ГЭС.

[ОАО "Системный оператор ЕЭС" - доклад на НТС ЕЭС. Режимы ОЭС Сибири и их изменения после аварии. Принятые меры - подробно. Эти меры обеспечивают надёжное энергоснабжение в осенне-зимний период 2009/10 гг.]

Электрические станции, 2009, No 12, 11-14.

31. Саламов А.А. Глобальный спрос на энергию и ограничения такого спроса.

[Энергоресурсы - основа достойного уровня жизни. Проблемы роста потребности в энергии, связи с экономическим потенциалом страны, прогнозы. Сферы потребления, резервы энергосбережения, потребность в топливе, эффективность энергетики. Информативно и популярно.]

Энергетик, 2009, No 11, 19-24.

32. Черненко П.А., Мартынюк А.В., Заславский А.И., Денисевич К.Б. Повышение эффективности планирования режимов энергообъединения с использованием комплекса среднесрочного планирования.

[ИЭД, ГР НЭК "Укрэнерго". Математические модели изменения суммарной нагрузки и электропотребления разных объектов с учетом метеорологических и технологических влияний на режимы по ОЭС Украины.]

Электрические сети и системы (Киев), 2009, No 5, 21-35.

33. Клипков С.И. К вопросу математического моделирования предельных режимов электрических систем переменного тока.

[НЭК "Укрэнерго". Широко используемые уравнения системы переменного тока. Понятие "Комплексная мощность" не поддается расчетам по теории функций комплексного переменного. Возможности гиперкомплексного обобщения комплексных уравнений.]

Электрические сети и системы (Киев), 2009, No 5, 36-48.

101. Романов Р.А., Севастьянов В.В. Надежность подшипниковых узлов энергооборудования.

[ООО"Балтех". Причины преждевременных отказов, доля неправильного монтажа в отказах - 40% и 45% - неправильной эксплуатации. Предложение услуг по технической экспертизе фирмой "Балтех", выгода от этого. Электроэрозия в таблице не упомянута.]

Энергетик, 2009, No 11, 42,43.

102. Завидей В.И., Крупенин Н.В., Голубев А.В., Волошин В.Н., Вихров М.А., Милованов С.М. О поддержании эксплуатационной надежности турбогенераторов. [ФГУП ВЭИ, Смоленская АЭС, ООО "Панатест". Испытания турбогенераторов АЭС мощностью 500 и 800 МВт — тепловизионный контроль, УФ-контроль, люминесцирующие покрытия, потери в стали и др.]

Энергетик, 2009, No 11, 46,47.

103. Sumereder Ch., Muhr M., Marketz M., Rupp Chr., Krueger M. Необычные методы диагностики при испытаниях обмотки статора генераторов.

[Univ.Graz, KELAG, OMICRON. Сравнение обычных методов диагностики - сопротивление изоляции, тангенс угла потерь и частичные разряды с измерениями поляризационных характеристик. Они дают дополнительную информацию об изоляции. Библ. 26 назв.]

IEEE Electrical Insulation Magazine, 2009, No 5, 18-24.

ДВИГАТЕЛИ, РЕГУЛИРУЕМЫЙ ЭЛЕКТРОПРИВОД

104. Волков И.В., Калюжный В.В., Калюжный С.В. Преобразователь токопараметрического асинхронно-вентильного каскада.

[ИЭД НАН Украины, ДонГТУ. Преобразователь на основе предложенного МЭИ 20 лет ТПВП, не внедренного из-за экономического кризиса и консерватизма инженерного мышления. Сочетание ТПВП с АВК для кранов - система ПТПАВК, описанная в статье.]

Электричество, 2009, No 11, 57-61.

105. Фондеркин Р.А., Дерюжкова Н.Е. Разработка и исследование нейросетевых наблюдателей состояния в частотно-регулируемых асинхронных электроприводах.

[ТУ Комсомольск-на-Амуре. На примере трубного стана немецкой фирмы VAI Seurthe. Бездатчиковый электропривод - принципы, функциональная схема. Векторное управление электроприводом.]

Приводная техника, 2009, No 6, 33-39.

96. Качесов В.Е. О расчете крутизны перенапряжения на обмотках электрических машин. [НГТУ. Системы питания собственных нужд ТЭЦ. Методы импульсных испытаний изоляции электродвигателей, деформация волны в питающем кабеле - включение на шины бесконечной и конечной мощности.]

Электричество, 2009, No 11, 16-26.

ЭЛЕКТРИЧЕСКИЕ МАШИНЫ, ГЕНЕРАТОРЫ

97. Меморандум участников международной научно-технической конференции "ЭЛМАШ-2009". [Состояние электротехнической промышленности: уменьшение объемов производства, сокращение числа научных и конструкторских кадров, неэффективное использование основных фондов, отставание в сроках обновления электрооборудования. Необходим инновационный путь развития.]

Вести в электроэнергетике, 2009, No 5, 49,50.

98. Буренин В.В. Подшипники скольжения из антифрикционных материалов для вращающихся валов машин и механизмов. (МАДИ)

[Преимущества подшипников скольжения - они в два раза меньше по диаметру, не вызывают дополнительных вибраций (фреттинг-коррозии и ложного бринеллирования). Отличный обзор конструкций и материалов.]

Приводная техника, 2009, No 2, 45-53.

99. Хватов О.С., Тарасов И.М., Тарпанов И.А. Система автоматического управления на базе нечеткой логики автономным генератором по схеме машины двойного питания.

[ВГАВТ, Н.Новгород. Анализ динамических режимов с учетом влияния перекрестных связей между контурами регулирования. Преимущества применения fuzzy-perуляторов.]

Приводная техника, 2009, No 3, 25-28.

100. Боровиков Ю.С., Наурызбеков Д.К., Слободян С.М. Стохастическая модель "живучести" скользящего контакта электрических машин.

[Диагностика скользящего аппарата с помощью эволюционных алгоритмов - методов стохастических цепей и биологической эволюции. Процессы износа пары "щетка-коллектор". Проводящая и непроводящая зоны контакта.]

Электричество, 2009, No 12, 64-67.

34. Порет Э. В электроэнергетике пока недостаточно инновационной инициативы (Ливинский А. - исп.директор НП "ВТИ")

[Некоммерческое партнерство на базе ВТИ. Задача НП - обеспечить эффективное управление одним из ведущих научных центров отрасли, создать современную команду специалистов под серьезную целевую программу.]

Инновации в электроэнергетике, 2008, No 1, 23.

35. Пистора Зденек. Расчет надежности электрических сетей с помощью итерационных методов. (Унив.Острава. Чехия.) [Расчет интенсивности отказов (аварийных и ремонтных) и их средней продолжительности на основе метода Монте-Карло (программа Spoleh) и сравнение этого метода с аналитическим расчетом надежности.]

Электрические сети и системы (Киев), 2009, No 5, 17-20.

36. Isser St. Как определить потребность в электроэнергии в динамике? [Good Company Ass. Контролируемые параметры - нагрузки, надежность снабжения, регулирование, вращающийся резерв, остановленный резерв. Тарифы - оплата надежности, пиковые цены, оценка в реальном времени. Оплата снижения пиковой мощности, возможности перерыва питания.]

Electric Light & Power, 2009, No 3, 30,31,61.

УПРАВЛЕНИЕ ЭНЕРГОСИСТЕМАМИ

37. Моржин Ю., Шакарян Ю., Воротницкий В., Новиков Н. Инновационные технологии снижения потерь и оперативного диспетчерского управления.

[Совершенствование средств и систем расчета снижения потерь электроэнергии, новая техника - СТК и ВТСП-устройства. Интерактивное моделирование расчетов работы энергосистем. Комплекс КАСКАД-НТ. Авторизация технологического управления электросетевыми активами. Разработки ВНИИЭ в области АСТУ, экспертных систем и др. проблем.]

Инновации в электроэнергетике, 2008, No 1, 44-48.

38. Денисенко А.В. Полвека на посту (К пятидесятилетию ОДУ Сибири) [История создания этого мощного энергообъединения, а с ним - его диспетчерского управления. Задачи, данные энергообъединения, карта сетей. ОДУ Сибири сумело сохранить качество своей работы в новых, рыночных условиях.]

Электрические станции, 2009, No 12, 9,10.

39. Воронов И.В., Политов Е.А.Краткосрочное прогнозирование электропотребления энергосистем с помощью искусственных нейронных сетей.

[ОДУ Сибири. Балансы электроэнергии и мощности - в компетенции Системного оператора. Прогнозная модель на базе ИНС - структура, входные параметры, обучение и тестирование ИНС.]

Электрические станции, 2009, No 12, 15-18.

40. Шибанов В.Ю. Центр тренажерной подготовки персонала Филиала ОАО "СО ЕЭС" ОДУ Сибири.

[Требования к подготовке персонала ОДУ, возможности тренажерных комплексов. В ОДУ Сибири - с 2006 г. Курсы подготовки специалистов.]

Электрические станции, 2009, No 12, 46,47.

41. Готман В.И. Критерии оценки экономической эффективности компенсации реактивной мощности в электроснабжении.

[Многовариантность решения - стоимость компенсаторов, снижение потерь активной мощности, тарифы на электроэнергию и др. Критерии - чисто дисконтированный доход или суммарные дисконтированные затраты. Для расчета инвестиций ЧДД - удобнее.]

Электричество, 2009, No 12, 13-18.

42. Авраменко В.Н., Прихно В.Л., Линник Е.Н., Кочегаров Ю.И., Нистратов А.Д. Адаптивный программно-аппаратный комплекс для обеспечения устойчивости нагрузки крымской энергосистемы.

[Предпроектная концепция. Сложности некоторых режимов в межсистемной связи ОЭС Украины - Крым. Проект противоаварийной автоматики выполняет Укрэнергосетьпроект.]

Электрические сети и системы (Киев), 2009, No 5, 13-16.

43. Kar S., McKenna A. Стратегии управлением комплексом "производство-потребление" электроэнергии.

[Пять основных видов характеристики "производство-потребление" (выдача пакета, сбалансированный подход, основа - электроснабжени, задание резерва, контроль по времени).]

Electric Light & Power, 2009, No 2, 34-37.

44. Geidl M. Централизованное координированное поддержание стабильности напряжения в передающей сети передачи электроэнергии.

[SwissGrid AG. Предпосылки внедрения, концепции поддержания напряжения, первый опыт применения. Оптимальное распределение потоков реактивной мощности, его планирование на сутки.]

Bulletin SEV\VSE, 2009, 93, No 11, 23-25.

90. Емельянов В.И. Использование комплекса МИК-1 для определения механического состояния опорно-стержневой фарфоровой изоляции. (НПО "Логотех". Снежинск.)

[Развитие повреждений в таких изоляторах, методы оценки их состояния - визуальный, силовой, структуры материала и жесткости изолятора. Виброакустический метод с использованием комплекса МИК-1.] Энергетик, 2009, No 11, 16-18.

91. Чернышев Н.А. Измерение сопротивления в цепях электрооборудования.

[ООО СКБ ЭП, Иркутск. Прибор МИКО-2, пределы измерений 0,1-100000 мкОм, время измерения 4-600 сек. Объекты - трансформаторы и выключатели. (Измерение переходного сопротивления на МКП-110.)] Энергетик, 2009, No 11, 44.

92. Краснов М.И. Тестер микросхем оперативно-запоминающих устройств.

[Дешевый функциональный тестер - потребность, перечень имеющихся тестеров цифровых микросхем разных стран, в том числе, российских. Схема, описание, алгоритмы, структура программного обеспечения.] Вестник МЭИ, 2009, No 6, 215-220.

93. Никоненко В.А. Метрологическое обеспечение новых эталонов России: средства измерения температуры, теплопроводности и тепловых потоков.

[Национальный институт стандартов США обеспокоен недостаточной точностью измерений, мешающей развитию инновационных технологий. Наши достижения в области эталонов по перечисленной тематике.] Энергетик, 2009, No 11, 34-39.

94. Ohki Y. Новая лаборатория для испытаний изоляции в институте CRIEPI (Япония).

[Исследования в CRIEPI, новые возможности - испытания конструкций трансформатором 2 МВА 900 кВ 50 Гц и импульсным генератором 2600 кВ 260 кДж. Испытательный зал 35х31х30 м.]

IEEE Electrical Insulation Magazine, 2009, No 5, 43,44.

95. Huser A., Hofer H., Maurhofer P. Улучшение обслуживания оборудования при повышении качества данных о его состояния.

[Правильное ведение документации с широким применением вычислительной техники, примеры оформления документов.]

Bulletin SEV\VSE, 2009, 93, No 11, 19-21.

11

84. Белоусенко И.В., Лезнов В.Б. Опыт применения нового электрогенерирующего оборудования на объектах ОАО "Газпром".

[Расширение добычи природного газа в конце XX - начале XXI века ОАО "Газпром" на базе собственных источников электроснабжения: ПАЭС 2,5 МВт, ГТУ 2,5 МВт, ГТЭС-4 и ПГТЭС-1500. Ввод 2002-08 гг. - 250 МВт.]

Промышленная энергетика, 2009, No 12, 2-5.

ОБОРУДОВАНИЕ, ИСПЫТАНИЯ, ИЗОЛЯЦИЯ

85. Киншт Н.В., Петрунько Н.Н. Простая модель короткого замыкания витков катушки.

[Линейная катушка, связь ее параметров (число витков и добротность) с эквивалентным комплексным входным сопротивлением.]

Электричество, 2009, No 11, 69,70.

86. Киреева Э.А. Современные радиометрические тепловизоры Fluke. [Новые серии - Ti20 (обслуживание оборудования), Ti40 и Ti45 (профилактические обследования). Возможности и параметры приборов. Совмещение видимого и ИК-изображения с помощью системы Fluke IR-Fusion, программа SmartView.]

Промышленная энергетика, 2010, No 1, 61-64.

- 87. Рубанов В.В. Многоканальные измерители и регуляторы температуры. Теплометрия. [Применение регуляторов температуры, их развитие с внедрением МП-техники. Системы автоматического регулирования, многоканальные измерители и регуляторы температуры. Параметры и возможности.] Промышленная энергетика, 2009, No 12, 17-26.
- 88. Неделько А.Ю. Замена термоэлектрических преобразователей бесконтактными ИК-преобразователями.

[ОАО НПП "Эталон", Омск. Комбинация контактного и бесконтактного метода измерения температуры, позволяющая исключить влияние излучающих свойств поверхности измеряемого объекта.]

Промышленная энергетика, 2010, No 1, 25-27.

89. Сельхетдинов М.Ю. Проверка электрических установок. [ООО "МП ДИАГНОСТ". Элементарные измерения - проводка, устрой- ства УЗО, цепь заземления, электромашины (бытовой техники).] Энергетик, 2009, No 11, 41,42.

АСДУ, ИЗМЕРЕНИЯ И УЧЕТ ЭЛЕКТРОЭНЕРГИИ

45. Коц А.П., Решетуха А.Д. Современная система диспетчерского управления - инструмент гибкого переоснащения энергоснабжающего предприятия.

[ЗАО КОТС. Основные характеристики и структура АСУ ТП. На примере четырех РЭС. Развиваемое программное обеспечение, адаптирующееся к изменяющимся условиям на протяжении всего жизненного цикла.]

Электрические сети и системы (Киев), 2009, No 5, 57-61.

46. Кондратьева А.В., Василенко А.О. Учет в любой системе! АСКУЭ с PLC-связью.

[Концерн "Энергомера". Различные варианты АСКУЭ плюс связь по низковольтной сети PLC - решение многих проблем учета электроэнергии. Продукция - однофазные (СЕ102) и трехфазные (СЕ303) счетчики, PLСмодемы CE832C4 и устройства сбора и передачи данных УСПД-164-01М.] Энергетик, 2009, No 11, 48.

47. Stevens R., Hoiland J., Scott D. Подготовка к изменениям в производстве измерительной аппаратуры.

[Изменения - широкое применение автоматизированной системы AMI учета расхода электроэнергии с двусторонней передачей данных. Планы расширения производства "интеллектуальных" счетчиков и развития инфраструктуры системы AMI.]

Transm.and Distr.World, 2009, No 11, 18.

48. Geary S., Hatfield M. Сильная сеть развивается.

[CPS Energy, Enspiria Solutions. Увеличение вдвое рынка оборудования для систем AMI и MDMS автоматизированного измерения и управления данными. Архитектура принятой в CPS Energy системы, практика внедрения.]

Transm.and Distr.World, 2009, No 11, 38-42.

49. Автоматизированная система учета электроэнергии в энерго-компании Tucson Electric Power.

[Главное преимущество системы АМІ для потребителя - существенно меньшая оплата электроэнергии. Замена счетчиков на новые в массовом количестве. Объем измерений, надежность показаний во всей системе.]

Electric Light & Power, 2009, No 3, 19.

50. Wohlgenennt M. Новости электроснабжения на Бодензее.

[Внедрение автоматизированной системы учета электроэнергии и информационная система AMIS. Оптимизация нагрузок, высокая точность измерения потребления. Многофункциональные счетчики электроэнергии. Концентраторы данных.]

Bulletin SEV\VSE, 2009, 93, No 12, 35-37.

РЕЛЕЙНАЯ ЗАЩИТА, ТЕЛЕМЕХАНИКА, СВЯЗЬ

51. Гуревич В.И. О докладе "Основные требования к устройствам релейной защиты и управления, предназначенным к применению в современных энергосистемах России".

[ЦЛ "Израильэнерго". Резкая критика доклада на конференции в Чебоксарах 9-13.09.07. наших ведущих специалистов - ..."опус с общими рассуждениями и нечеткими формулировками, затрудняющими внедрение МП-защит"...]

Электрические сети и системы (Киев), 2009, No 5, 64-67.

52. Гуревич В.И. О некоторых оценках эффективности и надежности микропроцессорных устройств релейной защиты.

[ЦЛ Израильэнерго. Проблемы, возникающие при внедрении МПзащит. Критика разных подходов к внедрению с точки зрения эффективности РЗА. Оценка надежности МП-реле защиты. Нормализованный показатель отказов РЗ.]

Вести в электроэнергетике, 2009, No 5, 29-32.

53. Федосов А.Н., Пусенков Е.В. Проблемы, возникающие при внедрении микропроцессорной техники в системах противоаварийной автоматики. [ОДУ Сибири. Перечисление внедренных МП-ПАА. Их внедрение, особенно при наличии аварийных регистраторов - прорыв в части анализа причин срабатывания ПАА. Необходимость разработки типовых решений.]

Электрические станции, 2009, No 12, 40,41.

54. Лямец Ю.Я., Нудельман Г.С., Зиновьев Д.В., Кержаев Д.В., Романов Ю.В. Многомерная релейная защита. Ч.2. Анализ распознающей способности реле.

[ИЦ "Бреслер". Детализация метода алгоритмических моделей и виртуальных реле для его практического применения. Информационный анализинструмент исследования распознающей способности релейной защиты.]

Электричество, 2009, No 11, 9-15.

78. McCall J. Первопроходцы в Корее и в Китае.

[AMSC. Разработки СП-кабелей. Проект KEPRI-AMSC - кабели длиной 30 м и 100 м (2006 и 2007 гг.) на 22,9 кВ. Проект SECRI-AMSC — кабель 30 м 35 кВ (в разработке - на 110 кВ). СП-линии, СП и нанотехнологии, европейская "сверхсеть".]

Modern Power Systems, 2009, No 8, 10-12.

79. Завод по производству кабелей УВН.

[В Abbeville (SC) открыто производство кабелей с СПЭ-изоляцией на напряжения до 400 кВ. Процесс непрерывной вулканизации проходит в 16-этажной башне. Стоимость строительства завода Prismian - 46 млн долл.]

Transm.and Distr.World, 2009, No 11, 12.

80. Feldhahn J.K., Hudson R. Подземные кабели обретают новую жизнь.

[Ремонт распределительных кабелей жилого сектора в сети Salt River Project. Инъекция силикона в изоляцию продлевает срок службы кабеля. Технология процесса и испытания кабеля.]

Transm.and Distr.World, 2009, No 11, 52-56.

81. Vahlstrom V. Стратегии испытаний проложенных кабелей среднего напряжения.

[Применяемые методы, используемые стандарты, испытания по IEEE 400-2001. Дефекты и их развитие, методы оценки износа кабелей.] **IEEE Electrical Insulation Magazine, 2009, No 5, 7-17.**

ЭЛЕКТРОСТАНЦИИ И ПОДСТАНЦИИ

82. Самая северная ГРЭС.

[Наганская ГРЭС (Ханты-Мансийский АО) - три ПГУ по 400-450 МВт в Центральной Сибири, (Т° января -20-22°С, а летом не выше +18°С). Оборудование - Сименс. Ввод - март 2013 г. Далее - следующие три блока.]

Инновации в электроэнергетике, 2008, No 1, 37-39.

83. Гаврищенко В. "Штучные" инновации - козыри российского гидростроения... ... пора достать их из колоды

[Малое использование нашего гидропотенциала. Опередим зарубежье, создав Эвенкийскую ГЭС с агрегатами по 1000 МВт и получив еще один резервуар пресной воды. Решению мешают экологические исследования.]

Инновации в электроэнергетике, 2008, No 1, 62,63.

72. Чаплыгин Е.Е., Ковырзина О.С. Компенсация неактивных составляющих полной мощности дуговых сталеплавильных печей.

[МЭИ, "Ансальдо-ВЭИ". Применение пассивных компенсаторов гармоник и активных компенсаторов на тиристорах с сетевой коммутацией. Борьба с нестабильным потреблением реактивной мощности на примере ДСП 40 МВА.]

Электричество, 2009, No 11, 30-38.

73. Фомин А.В. Обобщенная математическая модель дуговой сталеплавильной печи со статическим тиристорным компенсатором и измерителями показателей качества электроэнергии.

[Модель –синхронный генератор с турбиной, APB и регулятор скорости. Параметры качества электроэнергии, измеритель Flickermeter 110 kV и 35 kV.]

Приводная техника, 2009, No 6, 51-57.

ВОЗДУШНЫЕ И КАБЕЛЬНЫЕ ЛИНИИ

74. Бобылева В.А. Опыт применения линейной арматуры спирального типа на линиях ООО "Сервис-Инвест" и внедрение новых разработок ЗАО "Электросетьстройпроект" (г.Москва) для решения нестандартных ситуаций на ВЛ.

[ДП "УкрЭССП". Проекты линий, выполненные в днепропетровском регионе. Положительные отзывы об эксплуатации такой арматуры.]

Электрические сети и системы (Киев), 2009, No 5, 47.

75. Конюхова Е.А., Гордеев Д.А., Диаа Абу Лехиа, Кленина Л.И. Оценка математического ожидания потерь напряжения в совокупности радиальных кабельных линий до 1 кВ. [МЭИ. Кабели 0,38 кВ. Необходимый минимум информации для их оценки. Параметры для оценки - номинальные относительные потери и коэффициент загрузки.]

Промышленная энергетика, 2010, No 1, 28-32.

76. Swirbul C. Линейщики преуспевают в овладении техникой.

[Международное родео линейщиков 2009 года - участники, виды соревнований, показ новой техники работы на ВЛ.]

Transm.and Distr.World, 2009, No 11, 66-68.

77. Zhang L., Boggs St.A., Livanos St., Varela G., Prazan A. Электрохимические основы повреждений в кабельных колодцах.

[Consolidated Edison. Опыт эксплуатации колодцев, виды воздействий и выявление дефектов. Библ. 22 назв.]

IEEE Electrical Insulation Magazine, 2009, No 5, 25-30.

55. Вайнштейн Р.А., Лапин В.И., Наумов А.М., Доронин А.В., Юдин С.М. Защита от замыканий на землю в обмотке статора генераторов на электростанциях ОЭС Сибири.

[ПТУ Томск, ОДУ Сибири, НПП "ЭКРА". Необходимость защиты без зоны нечувствительности. Типы защит - с наложением постоянного тока, с наложением тока 25 Гц, с ТТ нулевой последовательности.]

Электрические станции, 2009, No 12, 26-30.

56. Прутик А.Ф., Шмойлов А.В. Алгоритм оценки технической эффективности дифференциальной токовой защиты.

[ПТУ Томск. Анализ действия ДЗ, помехи и отстройка от них, "критерии технического эффекта" для оценки качества проектирования РЗ. Вероятностный алгоритм настройки ДЗ.]

Электрические станции, 2009, No 12, 30-35.

57. Расковалов Ю.В., Лир Е.А. О времени горения дуги на отключенной фазе ВЛ 500 кВ в цикле ОАПВ.

[ОДУ Сибири. На примере новых ВЛ 500 кВ с компенсационными реакторами для уменьшения тока подпитки дуги на отключенной фазе в цикле ОАПВ. Напряжение на отключенной фазе и время гашения дуги]

Электрические станции, 2009, No 12, 36-39.

58. Мякотин Г.С. Реконструкция высокочастотных каналов противоаварийной автоматики в операционной зоне Красноярского РДУ.

[ПАА в центральной и западной зонах ОЭС Сибири. Комплекс - на подстанции Итатская-1150. Реконструкция с 2000 г., в том числе, ВЧ-каналов ПАА и телемеханики. Подробно - объем реконструкции.]

Электрические станции, 2009, No 12, 42-45.

59. Прутик А.Ф., Шмойлов А.В. Разработка алгоритмов и программ для настройки и оценки технической эффективности релейной защиты.

[Экспертно-руководящий метод проектирования и настройки релейной защиты, назначение уставок и определение технической эффективности РЗ (определение для каждой настройки РЗ).]

Электричество, 2009, No 12, 19-26.

60 .Nicholson Т. Защита в критических ситуациях от нарушений информационной безопасности систем управления.

[Защита цифровой техники от посторонних вмешательств, в применении к предприятиям электроэнергетики. Меры, принимаемые Советом по надежности в США NERC.]

Electric Light & Power, 2009, No 3, 16,17.

ЭЛЕКТРИЧЕСКИЕ СЕТИ

61. Расковалов Ю.В., Лир Е.А. Режимы работы ВЛ 500 кВ с шунтирующими реакторами.

[Эксплуатационные и аварийные режимы работы ВЛ с ШР и УШР. Рекомендации, относящиеся к выводу ВЛ в ремонт, работы в цикле ОАПВ, исключению резонанса, проверке надежности УШР при ВЛ на XX.]

Электрические станции, 2009, No 12, 19-25.

62. ЗАО "РТСофт" информирует [Комплекс SMART-WAMS - регистратор переходных процессов, используемый в системе мониторинга переходных режимов. (Разработка "РТСофт" с ОАО "СО ЕЭС" и ЗАО "Институт энергетических систем") Комплекс - с использованием преобразователей МИП-02 серии 10.]

Электрические станции, 2009, No 12, 66.

63. Папков Б.В., Вуколов В.Ю.Особенности расчета нормативов потерь электроэнергии для территориальных сетевых организаций.

[Экономическая оценка деятельности ТСО определяется цифрами, предоставляемыми в службы государственного регулирования тарифов. Одна из них - нормативы потерь электроэнергии. Методы их расчета на базе данных АИИСКУЭ.]

Промышленная энергетика, 2010, No 1, 33-37.

64. Litos M. Ликвидация незнания: как поддерживает DOE развитие "сильной" сети.

[Экономическое стимулирование - Барак Обама выделил 4,6 млрд долл, на развитие Smart Grid. Действия различных организаций в США по разработке таких сетей. Выпуск информации "The Smart Grid: an Introduction" в 2008 г. к конференции в сентябре в Вашингтоне]

Electric Light & Power, 2009, No 2, 48,52,64.

65. Merlin A. Роль электрических сетей в энергетической политике Европы.

[СИГРЭ. Стратегическая роль сетей - обеспечение надежного снабже- ния электроэнергией высокого качества. Главные направления развития - разветвленная и мощная сеть питания многих стран плюс обеспечение использования децентрализованных источников энергии.]

Bulletin SEV\VSE, 2009, 93, No 11, 15-18. (фр.яз.)

66. Williamson R. Оклахома делает главным направлением развития сетей автоматизацию.

[Компания Oklahoma Gas & Electric. Главная задача - повышение надежности электроснабжения. Применяемая аппаратура, обучение работе, испытание аппаратуры для распределительных сетей - лаборатория.]

Transm.and Distr.World, 2009, No 11, 22-28.

67. Fischer B. Объятия "сильной" сети.

[Точка зрения потребителя на Smart Grid, сложность внедрения и задержки в освоении. Особенности сети Великобритании. Регулирование и обучение персонала.]

Modern Power Systems, 2009, No 8, 16.

68. Поставки аппаратуры для исследований в области Smart Grid [Компания AREVA T&D будет поставлять интеллектуальную электронную аппаратуру для исследований, проводимых EPRI по разработкам "сильных" сетей. Сюда входят дистанционная защита, защита трансформаторов, управление токами в линиях, измерители фазоров и синхронизация с GPS.]

Transm.and Distr.World, 2009, No 11, 10.

69. Wespl F., Schenk A. Расчеты поставки реактивной мощности из передающих сетей после 2010 г. [Swissgrid. Новые методики расчетов между передающими и распределительными сетями Швейцарии. Различные способы обмена мощностью и методы расчетов.]

Bulletin SEV\VSE, 2009, 93, No 11, 27-30.

70. "Сильные" сети - видимость или будущее? [Конференция на эту тему состоялась 16 сентября 2009 г. в Берне. Участвовало 140 специалистов, в постерсессии представлены экспонаты на 11 стендах. Общее мнение - наступает эпоха "сильных" сетей.]

Bulletin SEV\VSE, 2009, 93, No 11, 73,74.

ВЛПТ, FACTS, СИЛОВАЯ ЭЛЕКТРОНИКА

71. Силовая электроника. Краткий энциклопедический словарь терминов и определений. / под ред.Ф.И.Ковалева и М.В.Рябчинского. - М.: Изд.дом МЭИ, 2008 - 90 с.

[На русском и английском языке. Приобрести можно у Феликса Ивановича Ковалева - 613-87-22.]

Приводная техника, 2009, No 3, 24.